CHEM608O. Selected Topics in Inorganic Chemistry: Organotransition Metal Chemistry and Catalysis

SPRING 2011

Time and Place:	Tuesday, Thursday: 8:00-9:15 am, Room 1228	
Instructor:	Andrei N. Vedernikov	e-mail: avederni@umd.edu
Office:	Chemistry 2353 (wing #3)	phone: 5-2784
Office hours:	Monday, Thursday 2:00-3:00 pm or by appointment: call, e-mail or stop by	

Main text: "The Organotransition Metal Chemistry: From Bonding to Catalysis", 1st Edition (hardcover), by John Hartwig. University Science Books, 2010. ISBN-13: 978-1891389535.

Recommended text: The Organometallic Chemistry of the Transition Metals, 5th Edition (Hardcover), by Robert H. Crabtree. Wiley, 2009. ISBN: 978-0-470-25762-3.

Lecture notes, problem sets, this syllabus and other course-related documents can be found at						
http://www.chem.umd.edu/groups/vedernikov/VGroup_Teaching-11-608.htm						
Problem sets:	Will be distributed in class every second Thursday. Solutions are due by next					
	Thursday lecture. All pdf files with current problem sets can be found at the course					
	web-site listed above.					
Grading scheme:						
	Two Midterm Exams	100 points each	200			
	Final Exam	200 points	200			
	Seven Problem Sets	20 points each, five best scores counted	100			
		TOTAL	500			
Grades:	A , ≥ 85%; B , ≥ 75%;	$C, \ge 65\%; D, \ge 55\%.$				

Tentative lecture and midterm exam schedule:

Week Date/Lectur	Topics		
1	•		
Tu Jan 25 /1	Introduction. Course description. An overview of basic terms of coordination chemistry.		
Th Jan 27 /2	Classification of ligands. 18-electron rule. Isolobal analogy. Trends in bond strength (1).		
2		— , <i>i</i>	
Tu Feb 1 /3	Dative (L-type) ligands. Complexes of carbon monoxide and related ligands (2.2, 2.7).		
Th Feb 3 /4	Phosphines. Tolman electronic parameter and cone angle. (2.3)	Home work 1	
3			
Tu Feb 8 /5	Metal carbenes and carbynes. (2.4-2.5, 13.2).		
Th Feb 10 /6	Complexes of alkenes, alkynes and arenes (2.6). Home work 1 due		
4			
Tu Feb 15 /7	σ -Complexes (2.8).		
Th Feb 17 /8	X-type ligands. Metal hydrocarbyl complexes (3.2)	Home work 2	
5			
Tu Feb 22 /9	Allyl, benzyl and cyclopentadienyl complexes (3.5-3.7).		
Th Feb 24 /10	Metal hydrides (3.8) and halides (4.8).	Home work 2 due	
6			
Tu Mar 1 / 11	Metal-ligand multiple bonds (13).		
Th Mar 3 / 12	Fundamental organometallic reactions. Ligand substitution (5).	Home work 3	
7			
Tu Mar 8 /	Problem solving (midterm 1 – related)		
Th Mar 10 /	<u>Midterm exam 1</u> (Lectures 1-12; Chapters 1-3, 5, 13)	Home work 3 due	
8			
Tu Mar 15 / 13	Oxidative addition (6, 7).		
Th Mar 17 / 14	Reductive elimination (8).	Home work 4	
9			
Tu Mar 22 /			
Th Mar 24 /	Spring Break		
10			
Tu Mar 29 /15	Insertion reactions (9).		
Th Mar 31 /16	Elimination reactions (10).	Home work 4 due	
11			
Tu Apr 5 /17	Nucleophilic attack on coordinated ligands (11).		
Th Apr 7 /18	Electrophilic attack on coordinated ligands (12).	Home work 5	
12			
Tu Apr 12 /19	Homogeneous catalysis with TMC. Principles of catalysis. Asymr	2	
Th Apr 14 /20	Catalytic hydrogenation: alkenes, ketones, imines (15).	Home work 5 due	
13			
Tu Apr 19 /	Problem solving (midterm 2 – related)		
Th Apr 21 /	Midterm exam 2 (Lectures 13-22; Chapters 6-12)	Home work 6	
14			
Tu Apr 26 / 21	Catalytic hydrofunctionalization and oxidative functionalization of		
Th Apr 28 / 22	Catalytic carbonylation of olefins and related reactions (17).	HW 6 due	

<u>Note</u>: Numbers in parentheses below correspond to the Chapters in the text by John Hartwig.

15			
Tu	May 3 /23	Catalytic CH functionalization reactions (18).	
Th	May 5 /24	Catalytic C-C and C-X coupling reactions (19).	Home work 7
16			
Tu	May 10 /25	Catalytic alkene metathesis and polymerization (21-22)	Home work 7 due
Tu	May. 17	Final exam, 10:30 am -12:30 pm / all covered	

Expectations: The students are expected: 1) to attend *all* lectures and read text(s) well in advance before a topic is covered in the class so that the level of discussion and understanding of the course material during lectures will be enhanced; 2) to understand the background theory presented in lectures and in class reading; 3) to work independently and responsibly on problems distributed.

Academic Integrity and Policies:

- The students are expected to follow Honor Code and an Honor Pledge (<u>http://www.jpo.umd.edu/aca/honorpledge.htm</u>). The Code prohibits students from cheating on exams, plagiarizing papers, submitting the same paper for credit in two courses without authorization, buying papers, submitting fraudulent documents, and forging signatures etc.
- *The students are responsible to inform* the instructor of any intended absences *in advance. Notice should be provided as soon as possible but no later than the end of the schedule adjustment period.* It is especially important in connection with final examinations, since failure to reschedule a final examination before the conclusion of the final examination period may result in loss of credits during the semester.