The input file used here is tests/N2phetest.inp in the Hibridon directory tree
The potential subroutine is src/pot/pot_vfit.f
The input file reads potential data from the file tests/FOLLMEG.BIN
For more information on tensor and m-state resolved cross sections see M. H. Alexander and S. L. Davis, J. Chem. Phys. 78, 6754 (1983); B. Follmeg, P. Rosmus, and H.-J. Werner, J. Chem. Phys. 93, 4687 (1990).
Initiate execution of your code
% hib_vfit_151
--------------------------------------------------------------------------
HIBRIDON SCATTERING CODE V 4.3.2 BUILD DATE 09/04/09 11:08:10 EDT
AUTHORS: M. ALEXANDER, D. MANOLOPOULOS, H.-J. WERNER, B. FOLLMEG
CONTRIBUTORS: D. LEMOINE, P. VOHRALIK, G. COREY, R. JOHNSON, T. ORLIKOWSKI
A. BERNING, A. DEGLI-ESPOSTI, C. RIST, P. DAGDIGIAN, B. POUILLY
G. VAN DER SANDEN, M. YANG, F. DE WEERD, S. GREGURICK, J. KLOS
--------------------------------------------------------------------------
BUILD CONFIGURATION:
SYS=OS X 10.5.8; MACH=unix-darwin unix-ifort unix-darwin64
CC=; FC=/opt/intel/fce/10.1.014/bin/ifort -O3 -save
LIB_ROOT=-L/Library/Frameworks/Intel_MKL.framework/Versions/10.0.4.022/lib/em64t
LIBRARIES: -lmkl_intel_ilp64 /
-lmkl_intel_thread -lmkl_core -lmkl_intel_thread -lmkl_core -lmkl_intel_thread -lmkl_core -lguide -lpthread
--------------------------------------------------------------------------
Hibridon> inp=n2phetest.inp
POTENTIAL LOADED FROM FILE FOLLMEG.BIN
Here follows the usual output from data input into the pot_vfit potential
subroutine
LABEL: mha's 16-apr-1997 fit to follmeg's points
Molecule is homonuclear
NUMBER OF TERMS (NTRM) READ IN: 1
NTRM LMMIN LMMAX MLD NVBLOCKS
1 2 4 0 1
Hibridon> show
*** Parameters (scattering):
JTOT1 = 0 JTOT2 = 30 JTOTD = 1 JLPAR = 0
NERG = 1 NUMAX = 0 NUMIN = 0 NUD = 1
LSCREEN= 80 IPRINT = -1
FSTFAC = 5.000 RINCR = 1.000 RCUT = 50.00 RENDAI = 75.00
RENDLD = 6.000 RSTART = 3.500 SPAC = 0.1000 TOLAI = 1.250
XMU = 3.502
NOUT: 6; JOUT: 0 2 4 6 8 10
INDOUT: 0
*** 1-SIGMA system parameters:
NTERM = 1 VMIN = 0 VMAX = 0 JMIN = 0
JMAX = 10
BROT = 1.941 DROT = 0.000 HROT = 0.000 EVIB = 0.000
LAMMIN: 2
LAMMAX: 4
MPROJ: 0
*** Flags:
AIRYFL= T BASTST= F BATCH = F CHLIST= T CSFLAG= F FLAGHF= F
FLAGSU= F IHOMO = T IPOS = F LOGDFL= T NOPRIN= T NUCROS= F
PHOTOF= F PRAIRY= F PRLOGD= F PRPART= F PRSMAT= F PRT2 = F
PRXSEC= F READPT= T RSFLAG= F T2TEST= F TWOMOL= F WAVEFL= F
WRPART= F WRSMAT= T WRXSEC= T BOUNDC= F
** Maximum Channels: 151; Anisotropic Terms: 80
** Energies: 150.000000
** Label: Test of N2+_He using Follmeg-Rosmus PES
** Pot name: WERNER-FOLLMEG VFIT
** Input File: N2phetest.inp
** Output file: Outpt
** Jobname: Job
lower the maximum rotational quantum number and the maximum
partial wave so that this test calculation will execute quickly
Hibridon> jmax=8
Hibridon> jtot2=20
run the calculation to generate the required S matrices
Hibridon> run
** J = 0 JLPAR = 1 FINISHED; CPU: 00:00:00.010 WALL: 00:00:00.010 DATE: Sep 4 11:13:22 2009
** J = 1 JLPAR = 1 FINISHED; CPU: 00:00:00.016 WALL: 00:00:00.043 DATE: Sep 4 11:13:22 2009
** J = 2 JLPAR = 1 FINISHED; CPU: 00:00:00.026 WALL: 00:00:00.078 DATE: Sep 4 11:13:22 2009
** J = 3 JLPAR = 1 FINISHED; CPU: 00:00:00.037 WALL: 00:00:00.127 DATE: Sep 4 11:13:22 2009
** J = 4 JLPAR = 1 FINISHED; CPU: 00:00:00.058 WALL: 00:00:00.242 DATE: Sep 4 11:13:22 2009
** J = 5 JLPAR = 1 FINISHED; CPU: 00:00:00.102 WALL: 00:00:00.278 DATE: Sep 4 11:13:23 2009
** J = 6 JLPAR = 1 FINISHED; CPU: 00:00:00.155 WALL: 00:00:00.324 DATE: Sep 4 11:13:23 2009
** J = 7 JLPAR = 1 FINISHED; CPU: 00:00:00.212 WALL: 00:00:00.371 DATE: Sep 4 11:13:23 2009
** J = 8 JLPAR = 1 FINISHED; CPU: 00:00:00.264 WALL: 00:00:00.416 DATE: Sep 4 11:13:23 2009
** J = 9 JLPAR = 1 FINISHED; CPU: 00:00:00.313 WALL: 00:00:00.455 DATE: Sep 4 11:13:23 2009
** J = 10 JLPAR = 1 FINISHED; CPU: 00:00:00.369 WALL: 00:00:00.502 DATE: Sep 4 11:13:23 2009
** J = 11 JLPAR = 1 FINISHED; CPU: 00:00:00.423 WALL: 00:00:00.548 DATE: Sep 4 11:13:23 2009
** J = 12 JLPAR = 1 FINISHED; CPU: 00:00:00.476 WALL: 00:00:00.591 DATE: Sep 4 11:13:23 2009
** J = 13 JLPAR = 1 FINISHED; CPU: 00:00:00.508 WALL: 00:00:00.640 DATE: Sep 4 11:13:23 2009
** J = 14 JLPAR = 1 FINISHED; CPU: 00:00:00.562 WALL: 00:00:00.685 DATE: Sep 4 11:13:23 2009
** J = 15 JLPAR = 1 FINISHED; CPU: 00:00:00.611 WALL: 00:00:00.724 DATE: Sep 4 11:13:23 2009
** J = 16 JLPAR = 1 FINISHED; CPU: 00:00:00.661 WALL: 00:00:00.768 DATE: Sep 4 11:13:23 2009
** J = 17 JLPAR = 1 FINISHED; CPU: 00:00:00.713 WALL: 00:00:00.812 DATE: Sep 4 11:13:23 2009
** J = 18 JLPAR = 1 FINISHED; CPU: 00:00:00.736 WALL: 00:00:00.861 DATE: Sep 4 11:13:23 2009
** J = 19 JLPAR = 1 FINISHED; CPU: 00:00:00.790 WALL: 00:00:00.907 DATE: Sep 4 11:13:23 2009
** J = 20 JLPAR = 1 FINISHED; CPU: 00:00:00.848 WALL: 00:00:00.955 DATE: Sep 4 11:13:23 2009
** NCH = 0, MOVE ON TO NEXT PARTIAL WAVE
** J = 1 JLPAR =-1 FINISHED; CPU: 00:00:00.885 WALL: 00:00:00.991 DATE: Sep 4 11:13:23 2009
** J = 2 JLPAR =-1 FINISHED; CPU: 00:00:00.911 WALL: 00:00:01.020 DATE: Sep 4 11:13:23 2009
** J = 3 JLPAR =-1 FINISHED; CPU: 00:00:00.917 WALL: 00:00:01.047 DATE: Sep 4 11:13:23 2009
** J = 4 JLPAR =-1 FINISHED; CPU: 00:00:00.928 WALL: 00:00:01.080 DATE: Sep 4 11:13:23 2009
** J = 5 JLPAR =-1 FINISHED; CPU: 00:00:00.939 WALL: 00:00:01.110 DATE: Sep 4 11:13:23 2009
** J = 6 JLPAR =-1 FINISHED; CPU: 00:00:00.958 WALL: 00:00:01.157 DATE: Sep 4 11:13:23 2009
** J = 7 JLPAR =-1 FINISHED; CPU: 00:00:01.006 WALL: 00:00:01.198 DATE: Sep 4 11:13:23 2009
** J = 8 JLPAR =-1 FINISHED; CPU: 00:00:01.040 WALL: 00:00:01.230 DATE: Sep 4 11:13:23 2009
** J = 9 JLPAR =-1 FINISHED; CPU: 00:00:01.071 WALL: 00:00:01.254 DATE: Sep 4 11:13:23 2009
** J = 10 JLPAR =-1 FINISHED; CPU: 00:00:01.105 WALL: 00:00:01.280 DATE: Sep 4 11:13:24 2009
** J = 11 JLPAR =-1 FINISHED; CPU: 00:00:01.140 WALL: 00:00:01.306 DATE: Sep 4 11:13:24 2009
** J = 12 JLPAR =-1 FINISHED; CPU: 00:00:01.175 WALL: 00:00:01.333 DATE: Sep 4 11:13:24 2009
** J = 13 JLPAR =-1 FINISHED; CPU: 00:00:01.209 WALL: 00:00:01.359 DATE: Sep 4 11:13:24 2009
** J = 14 JLPAR =-1 FINISHED; CPU: 00:00:01.246 WALL: 00:00:01.389 DATE: Sep 4 11:13:24 2009
** J = 15 JLPAR =-1 FINISHED; CPU: 00:00:01.283 WALL: 00:00:01.420 DATE: Sep 4 11:13:24 2009
** J = 16 JLPAR =-1 FINISHED; CPU: 00:00:01.318 WALL: 00:00:01.447 DATE: Sep 4 11:13:24 2009
** J = 17 JLPAR =-1 FINISHED; CPU: 00:00:01.352 WALL: 00:00:01.473 DATE: Sep 4 11:13:24 2009
** J = 18 JLPAR =-1 FINISHED; CPU: 00:00:01.400 WALL: 00:00:01.514 DATE: Sep 4 11:13:24 2009
** J = 19 JLPAR =-1 FINISHED; CPU: 00:00:01.453 WALL: 00:00:01.560 DATE: Sep 4 11:13:24 2009
** J = 20 JLPAR =-1 FINISHED; CPU: 00:00:01.492 WALL: 00:00:01.591 DATE: Sep 4 11:13:24 2009
===============================================================================
**** END OF CALCULATION ****
MAXIMUM NUMBER OF CHANNELS USED WAS: 20
TIMING: ELAPSED 00:00:01.591/ CPU 00:00:01.492/ MP RATIO 93.8 %
CURRENT DATE: Sep 4 11:13:24 200
===============================================================================
invoke the command to calculate tensor
opacities using the previously determined S-matrix elements
Hibridon> tenxsc,,,2,12,0,0,20,0,6
CLOSE COUPLED TENSOR OPACITIES
S-MATRICES READ FROM FILE Job1.smt
WRITTEN: Sep 4 11:13:22 2009
LABEL: Test of N2+_He using Follmeg-Rosmus PES
POT NAME: WERNER-FOLLMEG VFIT
DATE: Sep 4 11:13:47 2009
ENERGY: 150.000 cm(-1) MASS: 3.502
SUMMING PARTIAL WAVES FROM JTOT= 0 TO JTOT= 20
MAX(KI,KF) = 12; 0 .LE. LAMDA .LE. 0; MAXIMUM NUMBER OF BUFFERS =580
COLUMNS ARE INITIAL STATES; ROWS ARE FINAL STATES
LEVEL LIST FOR TENSOR OPACITIES (OPEN CHANNELS)
N J INDEX EINT(cm-1)
1 0 0 0.000
2 2 0 11.647
3 4 0 38.824
4 6 0 81.530
TENSOR RANK K = 0
1 2 3 4
1 5.7581E+01 8.0266E+00 1.5126E+00 4.8517E-01
2 7.4034E+00 6.0704E+01 9.8114E+00 2.5705E+00
3 1.1211E+00 7.8841E+00 6.3023E+01 1.4646E+01
4 2.2146E-01 1.2721E+00 9.0200E+00 1.8450E+02
TENSOR RANK K = 1
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 5.4929E+01 8.0684E+00 1.9591E+00
3 0.0000E+00 6.4835E+00 5.9274E+01 1.3625E+01
4 0.0000E+00 9.6954E-01 8.3910E+00 1.7376E+02
TENSOR RANK K = 2
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 5.1126E+01 6.3560E+00 1.4122E+00
3 0.0000E+00 5.1075E+00 5.5993E+01 1.2167E+01
4 0.0000E+00 6.9891E-01 7.4932E+00 1.6501E+02
TENSOR RANK K = 3
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 4.8055E+01 4.3591E+00 8.7637E-01
3 0.0000E+00 3.5029E+00 5.2318E+01 1.0496E+01
4 0.0000E+00 4.3371E-01 6.4639E+00 1.5678E+02
TENSOR RANK K = 4
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 5.1171E+01 2.8307E+00 5.4620E-01
3 0.0000E+00 2.2746E+00 4.9305E+01 8.7302E+00
4 0.0000E+00 2.7031E-01 5.3767E+00 1.4928E+02
TENSOR RANK K = 5
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 4.6630E+01 6.9416E+00
4 0.0000E+00 0.0000E+00 4.2751E+00 1.4207E+02
TENSOR RANK K = 6
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 4.4724E+01 5.2063E+00
4 0.0000E+00 0.0000E+00 3.2064E+00 1.3480E+02
TENSOR RANK K = 7
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 4.3537E+01 3.5295E+00
4 0.0000E+00 0.0000E+00 2.1737E+00 1.2789E+02
TENSOR RANK K = 8
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 4.4956E+01 2.0795E+00
4 0.0000E+00 0.0000E+00 1.2807E+00 1.2226E+02
TENSOR RANK K = 9
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 1.1743E+02
TENSOR RANK K = 10
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 1.1358E+02
TENSOR RANK K = 11
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 1.1092E+02
TENSOR RANK K = 12
1 2 3 4
1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
2 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
3 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
4 0.0000E+00 0.0000E+00 0.0000E+00 1.1016E+02
** N = 0 COMPLETED, TIMING ELAPSED: 00:00:00.067 CPU: 00:00:00.058
** TENXSC FINAL TIMING, ELAPSED: 00:00:00.075 CPU: 00:00:00.066 **
Hibridon> mrcrs
tcbfil: Job1.tcb
mcsfil: Job1.mcs
CLOSE COUPLED M-RESOLVED CROSS SECTIONS
K K'-MATRICES READ FROM FILE Job1.tcb
WRITTEN: Sep 4 11:13:47 2009
LABEL: Test of N2+_He using Follmeg-Rosmus PES
MAX(K, K') IN PREVIOUS CALCULATION = 12
WARNING: M-DEPENDENCE CORRECT ONLY FOR J+J' .LE. 12
ROWS ARE INITIAL STATES, COLUMNS ARE FINAL STATES
LAST COLUMN IS SUM OF THE ROW
TRANSITION J1 = 0 -> J2 = 0, LAM = 0 ,TOTAL CROSS SECTION = 5.758E+01
0
0 5.758E+01 5.758E+01
TRANSITION J1 = 0 -> J2 = 2, LAM = 0 ,TOTAL CROSS SECTION = 1.655E+01
-2 -1 0 1 2
0 3.311E+00 3.311E+00 3.311E+00 3.311E+00 3.311E+00 1.655E+01
TRANSITION J1 = 0 -> J2 = 4, LAM = 0 ,TOTAL CROSS SECTION = 3.363E+00
-4 -3 -2 -1 0 1 2 3 4
0 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.737E-01 3.363E+00
TRANSITION J1 = 0 -> J2 = 6, LAM = 0 ,TOTAL CROSS SECTION = 7.985E-01
-6 -5 -4 -3 -2 -1 0 1 2
0 6.142E-02 6.142E-02 6.142E-02 6.142E-02 6.142E-02 6.142E-02 6.142E-02 6.142E-02 6.142E-02
3 4 5 6
0 6.142E-02 6.142E-02 6.142E-02 6.142E-02 7.985E-01
TRANSITION J1 = 2 -> J2 = 0, LAM = 0 ,TOTAL CROSS SECTION = 3.590E+00
0
-2 3.590E+00 3.590E+00
-1 3.590E+00 3.590E+00
0 3.590E+00 3.590E+00
1 3.590E+00 3.590E+00
2 3.590E+00 3.590E+00
TRANSITION J1 = 2 -> J2 = 2, LAM = 0 ,TOTAL CROSS SECTION = 6.070E+01
-2 -1 0 1 2
-2 5.426E+01 3.288E+00 1.920E+00 5.385E-01 7.022E-01 6.070E+01
-1 3.288E+00 5.220E+01 1.900E+00 2.774E+00 5.385E-01 6.070E+01
0 1.920E+00 1.900E+00 5.306E+01 1.900E+00 1.920E+00 6.070E+01
1 5.385E-01 2.774E+00 1.900E+00 5.220E+01 3.288E+00 6.070E+01
2 7.022E-01 5.385E-01 1.920E+00 3.288E+00 5.426E+01 6.070E+01
TRANSITION J1 = 2 -> J2 = 4, LAM = 0 ,TOTAL CROSS SECTION = 1.058E+01
-4 -3 -2 -1 0 1 2 3 4
-2 5.323E+00 2.752E+00 1.295E+00 5.610E-01 2.476E-01 1.359E-01 9.254E-02 6.896E-02 1.019E-01 1.058E+01
-1 1.821E-01 2.791E+00 3.095E+00 2.296E+00 1.256E+00 4.989E-01 2.054E-01 2.173E-01 3.607E-02 1.058E+01
0 2.338E-01 4.672E-02 1.189E+00 2.385E+00 2.869E+00 2.385E+00 1.189E+00 4.672E-02 2.338E-01 1.058E+01
1 3.607E-02 2.173E-01 2.054E-01 4.989E-01 1.256E+00 2.296E+00 3.095E+00 2.791E+00 1.821E-01 1.058E+01
2 1.019E-01 6.896E-02 9.254E-02 1.359E-01 2.476E-01 5.610E-01 1.295E+00 2.752E+00 5.323E+00 1.058E+01
TRANSITION J1 = 2 -> J2 = 6, LAM = 0 ,TOTAL CROSS SECTION = 2.051E+00
-6 -5 -4 -3 -2 -1 0 1 2
-2 6.895E-01 4.687E-01 3.100E-01 1.998E-01 1.264E-01 7.968E-02 5.129E-02 3.465E-02 2.489E-02
-1 2.710E-02 2.582E-01 3.567E-01 3.653E-01 3.198E-01 2.490E-01 1.746E-01 1.118E-01 6.835E-02
0 4.766E-02 1.690E-02 6.976E-02 1.594E-01 2.495E-01 3.139E-01 3.371E-01 3.139E-01 2.495E-01
1 6.704E-03 3.092E-02 3.727E-02 4.547E-02 6.835E-02 1.118E-01 1.746E-01 2.490E-01 3.198E-01
2 1.793E-02 1.419E-02 1.519E-02 1.887E-02 2.489E-02 3.465E-02 5.129E-02 7.968E-02 1.264E-01
3 4 5 6
-2 1.887E-02 1.519E-02 1.419E-02 1.793E-02 2.051E+00
-1 4.547E-02 3.727E-02 3.092E-02 6.704E-03 2.051E+00
0 1.594E-01 6.976E-02 1.690E-02 4.766E-02 2.051E+00
1 3.653E-01 3.567E-01 2.582E-01 2.710E-02 2.051E+00
2 1.998E-01 3.100E-01 4.687E-01 6.895E-01 2.051E+00
TRANSITION J1 = 4 -> J2 = 0, LAM = 0 ,TOTAL CROSS SECTION = 5.042E-01
0
-4 5.042E-01 5.042E-01
-3 5.042E-01 5.042E-01
-2 5.042E-01 5.042E-01
-1 5.042E-01 5.042E-01
0 5.042E-01 5.042E-01
1 5.042E-01 5.042E-01
2 5.042E-01 5.042E-01
3 5.042E-01 5.042E-01
4 5.042E-01 5.042E-01
TRANSITION J1 = 4 -> J2 = 2, LAM = 0 ,TOTAL CROSS SECTION = 7.313E+00
-2 -1 0 1 2
-4 6.624E+00 2.266E-01 2.910E-01 4.488E-02 1.268E-01 7.313E+00
-3 3.425E+00 3.473E+00 5.814E-02 2.704E-01 8.582E-02 7.313E+00
-2 1.611E+00 3.851E+00 1.480E+00 2.555E-01 1.152E-01 7.313E+00
-1 6.982E-01 2.857E+00 2.968E+00 6.209E-01 1.692E-01 7.313E+00
0 3.081E-01 1.563E+00 3.570E+00 1.563E+00 3.081E-01 7.313E+00
1 1.692E-01 6.209E-01 2.968E+00 2.857E+00 6.982E-01 7.313E+00
2 1.152E-01 2.555E-01 1.480E+00 3.851E+00 1.611E+00 7.313E+00
3 8.582E-02 2.704E-01 5.814E-02 3.473E+00 3.425E+00 7.313E+00
4 1.268E-01 4.488E-02 2.910E-01 2.266E-01 6.624E+00 7.313E+00
TRANSITION J1 = 4 -> J2 = 4, LAM = 0 ,TOTAL CROSS SECTION = 6.302E+01
-4 -3 -2 -1 0 1 2 3 4
-4 5.584E+01 4.145E+00 1.360E+00 5.549E-01 3.346E-01 2.161E-01 1.811E-01 1.698E-01 2.215E-01 6.302E+01
-3 4.145E+00 5.097E+01 4.420E+00 1.817E+00 5.891E-01 4.336E-01 2.400E-01 2.413E-01 1.698E-01 6.302E+01
-2 1.360E+00 4.420E+00 4.937E+01 4.132E+00 2.266E+00 5.310E-01 5.240E-01 2.400E-01 1.811E-01 6.302E+01
-1 5.549E-01 1.817E+00 4.132E+00 4.910E+01 3.715E+00 2.528E+00 5.310E-01 4.336E-01 2.161E-01 6.302E+01
0 3.346E-01 5.891E-01 2.266E+00 3.715E+00 4.921E+01 3.715E+00 2.266E+00 5.891E-01 3.346E-01 6.302E+01
1 2.161E-01 4.336E-01 5.310E-01 2.528E+00 3.715E+00 4.910E+01 4.132E+00 1.817E+00 5.549E-01 6.302E+01
2 1.811E-01 2.400E-01 5.240E-01 5.310E-01 2.266E+00 4.132E+00 4.937E+01 4.420E+00 1.360E+00 6.302E+01
3 1.698E-01 2.413E-01 2.400E-01 4.336E-01 5.891E-01 1.817E+00 4.420E+00 5.097E+01 4.145E+00 6.302E+01
4 2.215E-01 1.698E-01 1.811E-01 2.161E-01 3.346E-01 5.549E-01 1.360E+00 4.145E+00 5.584E+01 6.302E+01
To save space in this sample output, I have
deleted all cross sections with J or J' > 4
** MRCRS FINAL TIMING ELAPSED: 00:00:00.013 CPU: 00:00:00.011 Hibridon> exit