Example of the command FLUX


Two examples are given, as well as an example of a photodissociation calculation without determination of the flux:

Photodissociation fluxes and wavefunctions

In this example the flux and wavefunction associated with the photodissociation of of CH3I described by the two dimensional model of Shapiro1 as modified by Guo and Schatz2. The flux calculations are described in work by Rist, Alexander, and Monolopoulos.3

1. M. Shapiro, J. Phys. Chem. 90, 3644 (1986).
2. H. Guo and G. C. Schatz, J. Chem. Phys. 93, 393 (1990); H. Guo, K. Q. Lao, G. C. Schatz, and A. D. Hammerich, ibid. 94, 6562 (1991).
3. M. H. Alexander, C. Rist, and D. E. Manolopoulos, J. Chem. Phys. 97, 4836 (1992); C. Rist and M. H. Alexander, ibid. 98, 6196 (1993).

The calculations are carried out with a code obtained by linking with the subroutine hib41/src/pot/pot_ch3i.f, as described by the command

The input data file is hib41/tests/Ch3i.inp

In this example, I have added illustrative comments in brown to the actual output of the run. In addition, the various commands have been linked to the corresponding help files


% hib_ch3i_100

 --------------------------------------------------------------------------
           HIBRIDON SCATTERING CODE V 4.0 04/15/96 18:03:35 EDT

     AUTHORS: M. ALEXANDER, D. MANOLOPOULOS, H.-J. WERNER, B. FOLLMEG
 CONTRIBUTORS: D. LEMOINE, P. VOHRALIK, G. COREY, R. JOHNSON, T. ORLIKOWSKI
               A. BERNING, A. DEGLI-ESPOSTI, C. RIST, P. DAGDIGIAN, B. POUILLY
               G. VAN DER SANDEN, M. YANG, F. DE WEERD
 --------------------------------------------------------------------------
 Hibridon> inp=Ch3i.inp
show the values of all variables and flags
 Hibridon> show
     *** Parameters:
 JTOT1  =   0        JTOT2  =   0        JTOTD  =   1        JLPAR  =   1
 NERG   =   1        NUMAX  =   0        NUMIN  =   0        NUD    =   1
 LSCREEN=  48        IPRINT =  -1
 FSTFAC =  1.500     RINCR  =  6.000     RCUT   =  30.00     RENDAI =  10.00
 RENDLD =  2.000     RSTART =  2.000     SPAC   = 1.0000E-02 TOLAI  =  1.050
 XMU    =  13.42
 NOUT:  1; JOUT:   0
 INDOUT:    1    2    3    4    5    6    7    8    9   10
           -1   -2   -3   -4   -5   -6   -7   -8   -9  -10

     *** user defined system parameters:
 NTERM  =   1        NPHOTO =   1        NDIP   =   1        VMIN(1)=   0
 VMAX(1)=   8        VMIN(2)=   0        VMAX(2)=   8
 RSHIFT = 0.0000E+00 EEL(1) = 3.4642E-02 EVIB(1)= 2.8776E-03 EEL(2) = 0.0000E+00
 EVIB(2)= 2.8776E-03
 LAMMIN:    1
 LAMMAX:    7
 MPROJ:     0
     *** Flags:
 AIRYFL= T    BASTST= F    BATCH = F    CHLIST= T    CSFLAG= F    FLAGHF= F
 FLAGSU= F    IHOMO = F    IPOS  = F    LOGDFL= F    NOPRIN= F    NUCROS= F
 PHOTOF= T    PRAIRY= F    PRLOGD= F    PRPART= F    PRSMAT= F    PRT2  = F
 PRXSEC= F    READPT= F    RSFLAG= F    T2TEST= F    TWOMOL= F    WAVEFL= F
 WRPART= F    WRSMAT= F    WRXSEC= F
 ** Maximum Channels:  100; Anisotropic Terms:  80
 ** Energies:    23090.000000
 ** Label:      SCHATZ CH3I PHOTODISSOCIATION
 ** Pot name:      SHAPIRO-GUO-SCHATZ 2D CH3I
 ** Input File:  Ch3i.inp
 ** Output file: Outpt
 ** Jobname:     Job
set the jobname, and set the flag WAVEFL true, so that the propagators and other necessary information will be stored in the file Ch3itest.wfu, to be used subsequently in the determination of the flux
 Hibridon> job=ch3itest
 Hibridon> wavefl=t
initiate calculation

 Hibridon> run

   N   EL  V  IND     EINT(CM-1)
   1   1   0   1     7918.819
   2   1   1   2     8550.379
   3   1   2   3     9181.939
   4   1   3   4     9813.499
   5   1   4   5    10445.060
   6   1   5   6    11076.620
   7   1   6   7    11708.180
   8   1   7   8    12339.740
   9   1   8   9    12971.300
  10   2   0  -1      315.780
  11   2   1  -2      947.340
  12   2   2  -3     1578.900
  13   2   3  -4     2210.460
  14   2   4  -5     2842.020
  15   2   5  -6     3473.581
  16   2   6  -7     4105.141
  17   2   7  -8     4736.701
  18   2   8  -9     5368.261

 Open channels:

   N   EL  V  IND     EINT(CM-1)
   1   1   0   1     7918.819
   2   1   1   2     8550.379
   3   1   2   3     9181.939
   4   1   3   4     9813.499
   5   1   4   5    10445.060
   6   1   5   6    11076.620
   7   1   6   7    11708.180
   8   1   7   8    12339.740
   9   1   8   9    12971.300
  10   2   0  -1      315.780
  11   2   1  -2      947.340
  12   2   2  -3     1578.900
  13   2   3  -4     2210.460
  14   2   4  -5     2842.020
  15   2   5  -6     3473.581
  16   2   6  -7     4105.141
  17   2   7  -8     4736.701
  18   2   8  -9     5368.261
 ** TOTAL NUMBER OF NONZERO V2 MATRIX ELEMENTS IS   207
 *** LODG:  PHOTOF=TRUE AND NSTEPS=  0 SHOULD BE .GT. 0; ABORT ***
 GAMMA2 INITIALIZED AT BEGINNING OF AIRPRP
 ** AIRY:  RSTART =  2.000  REND = 10.000   RINCR =  6.000   DRMIN =   .015   DRMAX =   .199   NSTEP = 321
 ** CPU TIMES:  BASIS= 00:00:00.08  POT= 00:00:00.12  LOGD= 00:00:00.00  AIRY=  00:00:02.46
                PSI0= 00:00:00.00  SMAT= 00:00:00.00

 ** J =    0 JLPAR = 1 COMPLETED
 CPU-TIMES:  BASIS: 00:00:00.08   POT: 00:00:00.12   LOGD:  00:00:00.00   AIRY:  00:00:02.46
             PSI0: 00:00:00.00   SMAT: 00:00:00.00   SOUT:  00:00:00.00   CUMULATIVE: 00:00:02.68
             ELAPSED:  00:00:04.47   CURRENT DATE:   15-Apr-96  21:24:12
 TURNING POINTS (MIN/MAX) =    4.10    4.70
 ===============================================================================
 **** END OF CALCULATION ****
      MAXIMUM NUMBER OF CHANNELS USED WAS:   18
      TIMING:  ELAPSED 00:00:04.47 / CPU 00:00:02.68
      CURRENT DATE:   15-Apr-96  21:24:12
 ===============================================================================
determine the photofragment wavefunction
 Hibridon> psi

 ** WAVEFUNCTION DETERMINATION ***

    FROM CALCULATION ON:  15-Apr-96  21:24:10
    INITIAL JOB LABEL: SCHATZ CH3I PHOTODISSOCIATION
    INITIAL POT NAME: SHAPIRO-GUO-SCHATZ 2D CH3I
    PHOTODISSOCIATION BOUNDARY CONDITIONS
    DIABATIC (ASYMPTOTIC) BASIS
    INFORMATION FROM FILE: Ch3itest.wfu
    ENERGY =  23090.000 cm(-1);  MASS =   13.4200
    CC CALCULATION:  JTOT =   0; JLPAR =  1

    WF DEFINED FROM R =   2.000 TO R =  10.000 AT  321 POINTS

    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)
                PROBED:   1   0   0    1     7918.819      58.1545
                PROBED:   2   0   0    2     8550.379      56.9312
                PROBED:   3   0   0    3     9181.939      55.6810
                PROBED:   4   0   0    4     9813.499      54.4021
                PROBED:   5   0   0    5    10445.060      53.0924
                PROBED:   6   0   0    6    11076.620      51.7496
                PROBED:   7   0   0    7    11708.180      50.3709
                PROBED:   8   0   0    8    12339.740      48.9535
                PROBED:   9   0   0    9    12971.300      47.4937
                PROBED:  10   0   0   -1      315.780      71.2518
                PROBED:  11   0   0   -2      947.340      70.2569
                PROBED:  12   0   0   -3     1578.900      69.2477
                PROBED:  13   0   0   -4     2210.460      68.2236
                PROBED:  14   0   0   -5     2842.020      67.1838
                PROBED:  15   0   0   -6     3473.581      66.1278
                PROBED:  16   0   0   -7     4105.141      65.0546
                PROBED:  17   0   0   -8     4736.701      63.9633
                PROBED:  18   0   0   -9     5368.261      62.8532
    FROM CALCULATION ON:  15-Apr-96  21:24:10
    INITIAL JOB LABEL: SCHATZ CH3I PHOTODISSOCIATION
    INITIAL POT NAME: SHAPIRO-GUO-SCHATZ 2D CH3I

 ** WAVEFUNCTION CALCULATION FINISHED:
    ELAPSED TIME: 00:00:04.71  CPU TIME:  00:00:01.02
the photofragment wavefunction is stored in the file {jobname}.psi (here Ch3itest.psi). You can view this file: hib41/tests/Ch3itest.psi

Now calculate the photofragement fluxes. To restrict the size of the output we change the size of the parameter array INDOUT. Fluxes are printed out only for final states for which the rotational quantum number and the additional index both appear in the parameter arrays JOUT and INDOUT


 Hibridon> indout,9,1,2,3,4,5,6,7,8,9
now determine the flux in the diabatic (asymptotic) basis For a discussion of the adiabatic and diabatic basis, see M. H. Alexander, C. Rist, and D. E. Manolopoulos, J. Chem. Phys. 97, 4836 (1992); C. Rist and M. H. Alexander, ibid. 98, 6196 (1993).

 Hibridon> flux,,1

 ** DETERMINATION OF OUTGOING FLUX ***
    FROM CALCULATION ON:  15-Apr-96  21:24:10
    INITIAL JOB LABEL: SCHATZ CH3I PHOTODISSOCIATION
    INITIAL POT NAME: SHAPIRO-GUO-SCHATZ 2D CH3I
    PHOTODISSOCIATION BOUNDARY CONDITIONS
    DIABATIC (ASYMPTOTIC) BASIS
    INFORMATION FROM FILE: Ch3itest.wfu
    ENERGY =  23090.000 cm(-1);  MASS =   13.4200
    CC CALCULATION:  JTOT =   0; JLPAR =  1
    FLUXES DETERMINED FROM R =   2.000 TO R =  10.000
    CLOSED CHANNEL THRESHOLD = -1.000E+09
    FACTOR FOR CLOSED CHANNEL DAMP =   .00
    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)
                PROBED:   1   0   0    1     7918.819      58.1545
                PROBED:   2   0   0    2     8550.379      56.9312
                PROBED:   3   0   0    3     9181.939      55.6810
                PROBED:   4   0   0    4     9813.499      54.4021
                PROBED:   5   0   0    5    10445.060      53.0924
                PROBED:   6   0   0    6    11076.620      51.7496
                PROBED:   7   0   0    7    11708.180      50.3709
                PROBED:   8   0   0    8    12339.740      48.9535
                PROBED:   9   0   0    9    12971.300      47.4937
                 TOTAL:  LAST COLUMN

 ** FLUX CALCULATION FINISHED:
    ELAPSED TIME: 00:00:02.35  CPU TIME:  00:00:00.49
now determine the flux in the adiabatic basis

 Hibridon> flux,,-1

 ** DETERMINATION OF OUTGOING FLUX ***
    FROM CALCULATION ON:  15-Apr-96  21:24:10
    INITIAL JOB LABEL: SCHATZ CH3I PHOTODISSOCIATION
    INITIAL POT NAME: SHAPIRO-GUO-SCHATZ 2D CH3I
    PHOTODISSOCIATION BOUNDARY CONDITIONS
    ADIABATIC BASIS
    INFORMATION FROM FILE: Ch3itest.wfu
    ENERGY =  23090.000 cm(-1);  MASS =   13.4200
    CC CALCULATION:  JTOT =   0; JLPAR =  1
    FLUXES DETERMINED FROM R =   2.000 TO R =  10.000
    CLOSED CHANNEL THRESHOLD = -1.000E+09
    FACTOR FOR CLOSED CHANNEL DAMP =   .00
    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)
                PROBED:  10   0   0    1     7918.819      58.1545
                PROBED:  11   0   0    2     8550.379      56.9312
                PROBED:  12   0   0    3     9181.939      55.6810
                PROBED:  13   0   0    4     9813.499      54.4021
                PROBED:  14   0   0    5    10445.060      53.0924
                PROBED:  15   0   0    6    11076.620      51.7496
                PROBED:  16   0   0    7    11708.180      50.3709
                PROBED:  17   0   0    8    12339.740      48.9535
                PROBED:  18   0   0    9    12971.300      47.4937
                 TOTAL:  LAST COLUMN

 ** FLUX CALCULATION FINISHED:
    ELAPSED TIME: 00:00:02.35  CPU TIME:  00:00:00.50
The fluxes are stored in the file {jobname}.flx (here Ch3itest.flx). You can view this file: hib41/tests/Ch3itest.flx

The asymptotic value of the photodissociation flux, which will be identical in either the diabatic or adiabatic basis, is identical to the value which would be calculated directly, without determination of the wavefunction. This can be checked by setting the flag WAVEFL false and rerunning the calculation.

 Hibridon> wavefl=f
 Hibridon> run

 All channels:

   N   EL  V  IND     EINT(CM-1)
   1   1   0   1     7918.819
   2   1   1   2     8550.379
   3   1   2   3     9181.939
   4   1   3   4     9813.499
   5   1   4   5    10445.060
   6   1   5   6    11076.620
   7   1   6   7    11708.180
   8   1   7   8    12339.740
   9   1   8   9    12971.300
  10   2   0  -1      315.780
  11   2   1  -2      947.340
  12   2   2  -3     1578.900
  13   2   3  -4     2210.460
  14   2   4  -5     2842.020
  15   2   5  -6     3473.581
  16   2   6  -7     4105.141
  17   2   7  -8     4736.701
  18   2   8  -9     5368.261

 Open channels:

   N   EL  V  IND     EINT(CM-1)
   1   1   0   1     7918.819
   2   1   1   2     8550.379
   3   1   2   3     9181.939
   4   1   3   4     9813.499
   5   1   4   5    10445.060
   6   1   5   6    11076.620
   7   1   6   7    11708.180
   8   1   7   8    12339.740
   9   1   8   9    12971.300
  10   2   0  -1      315.780
  11   2   1  -2      947.340
  12   2   2  -3     1578.900
  13   2   3  -4     2210.460
  14   2   4  -5     2842.020
  15   2   5  -6     3473.581
  16   2   6  -7     4105.141
  17   2   7  -8     4736.701
  18   2   8  -9     5368.261
 ** TOTAL NUMBER OF NONZERO V2 MATRIX ELEMENTS IS   207
 *** WARNING: IN LODG PHOTOF=TRUE AND NSTEPS=  0 SHOULD BE .GT. 0 ***
 GAMMA2 INITIALIZED AT BEGINNING OF AIRPRP
 ** AIRY:  RSTART =  2.000  REND = 10.000   RINCR =  6.000   DRMIN =   .015   DRMAX =   .199   NSTEP = 321
 ** CPU TIMES:  BASIS= 00:00:00.08  POT= 00:00:00.10  LOGD= 00:00:00.00  AIRY=  00:00:02.25
                PSI0= 00:00:00.00  SMAT= 00:00:00.01

 ** J =    0 JLPAR = 1 COMPLETED
 CPU-TIMES:  BASIS: 00:00:00.08   POT: 00:00:00.10   LOGD:  00:00:00.00   AIRY:  00:00:02.25
             PSI0: 00:00:00.00   SMAT: 00:00:00.01   SOUT:  00:00:00.00   CUMULATIVE: 00:00:02.45
             ELAPSED:  00:00:02.46   CURRENT DATE:   15-Apr-96  22:12:09
 TURNING POINTS (MIN/MAX) =    4.10    4.70
 ===============================================================================
 **** END OF CALCULATION ****
      MAXIMUM NUMBER OF CHANNELS USED WAS:   18
      TIMING:  ELAPSED 00:00:02.46 / CPU 00:00:02.45
      CURRENT DATE:   15-Apr-96  22:12:09
 ===============================================================================
 Hibridon> quit
 Hibridon> quit
the photofragment flux is contained at the end of the main output file, as illustrated here:

% tail -34 Outpt

** PHOTOFRAGMENT FLUXES (AU) (COLUMNS ARE FINAL STATES

          1           2           3           4           5           6
   1   4.4426E+01  3.1734E+01  1.2328E+01  2.0168E+00  1.3156E-01  2.3669E-02

          7           8           9          10          11          12
   1   1.7624E-02  3.9182E-03  1.9832E-04  1.2711E+00  1.4434E+00  7.5728E-01

         13          14          15          16          17          18
   1   2.6314E+00  4.6622E+00  3.2062E+00  1.2580E+00  4.2801E-01  1.0875E-01

** NORMALIZED PHOTOFRAGMENT FLUXES (COLUMNS ARE FINAL STATES

          1           2           3           4           5           6
   1   4.1735E-01  2.9811E-01  1.1581E-01  1.8947E-02  1.2359E-03  2.2235E-04

          7           8           9          10          11          12
   1   1.6556E-04  3.6809E-05  1.8630E-06  1.1941E-02  1.3560E-02  7.1141E-03

         13          14          15          16          17          18
   1   2.4720E-02  4.3798E-02  3.0120E-02  1.1818E-02  4.0209E-03  1.0216E-03

 ** TIMING (CPU/ELAPSED)
   BAS= 00:00:00.08 POT= 00:00:00.10 LOGD= 00:00:00.00 SMAT= 00:00:00.01
  AIRY= 00:00:02.25 PSI0= 00:00:00.00
 ** TURNING POINTS:  MIN=  4.097  MAX=  4.703 BOHR

 ** INTEGRATION WILL START 2.097 BOHR INSIDE INNER TURNING POINT
 **** END OF CALCULATION ****
      MAXIMUM NUMBER OF CHANNELS USED WAS:   18
      TIMING:  ELAPSED 00:00:02.46 / CPU 00:00:02.45
      CURRENT DATE:   15-Apr-96  22:12:09
 ===============================================================================
Return to:
Top | Commands | Examples | Hibridon Help

Collision fluxes

In this example the flux and adiabatic energies associated with the collision of Ar with N2, as described by the model potential of Pattengil et al.1 The flux calculations are similar to those described in our original paper on the quantum flux method.2

1. M. D. Pattengill, R. A. LaBudde, and R. B. Bernstein, J. Chem. Phys. 55, 5517 (1971)
2. M. H. Alexander, J. Chem. Phys. 95, 8931 (1991)

The calculations are carried out with a code obtained by linking with the subroutine hib41/src/pot/pot_arn2.f, as described by the command

The input data file is hib41/tests/Arn2.fluxinp

In this example, I have added illustrative comments in brown to the actual output of the run. In addition, the various commands have been linked to the corresponding help files


Initiate execution of your code
% hib_arn2_251

 --------------------------------------------------------------------------
           HIBRIDON SCATTERING CODE V 4.0 04/19/96 14:10:47 EDT

     AUTHORS: M. ALEXANDER, D. MANOLOPOULOS, H.-J. WERNER, B. FOLLMEG
 CONTRIBUTORS: D. LEMOINE, P. VOHRALIK, G. COREY, R. JOHNSON, T. ORLIKOWSKI
               A. BERNING, A. DEGLI-ESPOSTI, C. RIST, P. DAGDIGIAN, B. POUILLY
               G. VAN DER SANDEN, M. YANG, F. DE WEERD
 --------------------------------------------------------------------------
 Hibridon> inp=arn2.fluxinp
 Hibridon> show
     *** Parameters:
 JTOT1  =   0        JTOT2  =   0        JTOTD  =   4        JLPAR  =   1
 NERG   =   1        NUMAX  =   0        NUMIN  =   0        NUD    =   1
 LSCREEN=  48        IPRINT =   0
 FSTFAC =  1.000     RINCR  =  3.000     RCUT   =  30.00     RENDAI =  25.00
 RENDLD =  6.000     RSTART =  5.600     SPAC   = 8.0000E-02 TOLAI  =  1.030
 XMU    =  16.47
 NOUT:  5; JOUT:   0   2   4   6   8
 INDOUT:    0
     *** 1-SIGMA system parameters:
 NTERM  =   1        VMIN   =   0        VMAX   =   0        JMIN   =   0
 JMAX   =   8
 BROT   =  2.010     DROT   = 0.0000E+00 HROT   = 0.0000E+00 EVIB   = 0.0000E+00
 LAMMIN:    2
 LAMMAX:    2
 MPROJ:     0
     *** Flags:
 AIRYFL= T    BASTST= F    BATCH = F    CHLIST= T    CSFLAG= F    FLAGHF= F
 FLAGSU= F    IHOMO = T    IPOS  = F    LOGDFL= T    NOPRIN= F    NUCROS= F
 PHOTOF= F    PRAIRY= F    PRLOGD= F    PRPART= F    PRSMAT= F    PRT2  = F
 PRXSEC= F    READPT= F    RSFLAG= F    T2TEST= F    TWOMOL= F    WAVEFL= T
 WRPART= F    WRSMAT= F    WRXSEC= F
 ** Maximum Channels:  151; Anisotropic Terms:  80
 ** Energies:      135.000000
 ** Label:        N2-Ar CC PATTENGILL POTENTIAL
 ** Pot name:      PATTENGILL-LABUDDE-BERNSTEIN AR-N2
 ** Input File:  Arn2.fluxinp
 ** Output file: Outpt
 ** Jobname:     Job
fluxes and adiabatic energies are determined only over the range of R for which the AIRY propagator is used. Accordingly, disable the LOGD propagator and set RENDLD = RSTART so that the AIRY propagator is used over the entire range
 Hibridon> rstart=5.6;rendld=5.6;logdfl=f
run the calculation to create the required file Job.wfu, which contains the necessary information to generate the fluxes
 Hibridon> run

 **  CC SINGLET SIGMA DIATOMIC ** RMU=  16.4700       E= 135.00   JTOT=    0   J
LPAR= 1

 State    B(v)         D(v)        H(v)          E(v)
   0    2.0100      .00000E+00  .00000E+00      .00000000

   N   V   J    L      EINT(CM-1)

   1   0   0    0         .000
   2   0   2    2       12.060
   3   0   4    4       40.200
   4   0   6    6       84.420
   5   0   8    8      144.720

 OPEN LEVELS:

   N   V   J      EINT(CM-1)

   1   0   0         .000
   2   0   2       12.060
   3   0   4       40.200
   4   0   6       84.420
 ** TOTAL NUMBER OF NONZERO V2 MATRIX ELEMENTS IS     8
 ** AIRY:  RSTART =  5.600  REND = 25.000   RINCR =  3.000   DRMIN =   .080   DR
MAX =   .633   NSTEP =  72
 ** CPU TIMES:  BASIS= 00:00:00.01  POT= 00:00:00.00  LOGD= 00:00:00.00  AIRY=
00:00:00.08
                PSI0= 00:00:00.00  SMAT= 00:00:00.00

 ** J =    0 JLPAR = 1 COMPLETED
 CPU-TIMES:  BASIS: 00:00:00.01   POT: 00:00:00.00   LOGD:  00:00:00.00   AIRY:
 00:00:00.08
             PSI0: 00:00:00.00   SMAT: 00:00:00.00   SOUT:  00:00:00.00   CUMULA
TIVE: 00:00:00.10
             ELAPSED:  00:00:00.31   CURRENT DATE:   19-Apr-96  14:11:32
 TURNING POINTS (MIN/MAX) =    6.33    6.60
 ===============================================================================
 **** END OF CALCULATION ****
      MAXIMUM NUMBER OF CHANNELS USED WAS:    5
      TIMING:  ELAPSED 00:00:00.31 / CPU 00:00:00.10
      CURRENT DATE:   19-Apr-96  14:11:32
 ===============================================================================
determine the adiabatic energies. An alternative command would be EADIAB
 Hibridon> flux,,2

 ** ADIABATIC ENERGIES ***

    FROM CALCULATION ON:  19-Apr-96  14:11:32
    INITIAL JOB LABEL:   N2-Ar CC PATTENGILL POTENTIAL
    INITIAL POT NAME: PATTENGILL-LABUDDE-BERNSTEIN AR-N2
    SCATTERING BOUNDARY CONDITIONS
    ADIABATIC BASIS
    INFORMATION FROM FILE: Job.wfu
    ENERGY =    135.000 cm(-1);  MASS =   16.4700
    CC CALCULATION:  JTOT =   0; JLPAR =  1
    ADIABATIC ENERGIES DETERMINED FROM R =   5.600 TO R =  25.000
    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)
                PROBED:   1   0   0    0         .000       6.0773

 ** FLUX CALCULATION FINISHED:
    ELAPSED TIME: 00:00:00.33  CPU TIME:  00:00:00.02
the adiabatic energies are now stored in the file Job.flx.

now determine the fluxes in the diabatic basis

 Hibridon> flux,,1

 ** DETERMINATION OF INCOMING AND OUTGOING FLUX ***
    FROM CALCULATION ON:  19-Apr-96  14:11:32
    INITIAL JOB LABEL:   N2-Ar CC PATTENGILL POTENTIAL
    INITIAL POT NAME: PATTENGILL-LABUDDE-BERNSTEIN AR-N2
    SCATTERING BOUNDARY CONDITIONS
    DIABATIC (ASYMPTOTIC) BASIS
    INFORMATION FROM FILE: Job.wfu
    ENERGY =    135.000 cm(-1);  MASS =   16.4700
    CC CALCULATION:  JTOT =   0; JLPAR =  1
    FLUXES DETERMINED FROM R =   5.600 TO R =  25.000
    CLOSED CHANNEL THRESHOLD =  0.000E+00
    FACTOR FOR CLOSED CHANNEL DAMP =  1.00
    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)

               INITIAL:   1   0   0    0         .000
                PROBED:   1   0   0    0         .000       6.0773
                PROBED:   2   2   2    0       12.060       5.7995
                PROBED:   3   4   4    0       40.200       5.0927
                PROBED:   4   6   6    0       84.420       3.7199
                PROBED:   5   8   8    0      144.720      -1.6307
                 TOTAL:  LAST COLUMN

 ** FLUX CALCULATION FINISHED:
    ELAPSED TIME: 00:00:00.80  CPU TIME:  00:00:00.09
now determine the fluxes in the adiabatic basis

 Hibridon> flux,,-1

 ** DETERMINATION OF INCOMING AND OUTGOING FLUX ***
    FROM CALCULATION ON:  19-Apr-96  14:11:32
    INITIAL JOB LABEL:   N2-Ar CC PATTENGILL POTENTIAL
    INITIAL POT NAME: PATTENGILL-LABUDDE-BERNSTEIN AR-N2
    SCATTERING BOUNDARY CONDITIONS
    ADIABATIC BASIS
    INFORMATION FROM FILE: Job.wfu
    ENERGY =    135.000 cm(-1);  MASS =   16.4700
    CC CALCULATION:  JTOT =   0; JLPAR =  1
    FLUXES DETERMINED FROM R =   5.600 TO R =  25.000
    CLOSED CHANNEL THRESHOLD =  0.000E+00
    FACTOR FOR CLOSED CHANNEL DAMP =  1.00
    CHANNEL PARAMETERS:   N   J   L   IN    ENERGY(CM-1)    SQRT(K)

               INITIAL:   1   0   0    0         .000
                PROBED:   1   0   0    0         .000       6.0773
                PROBED:   2   2   2    0       12.060       5.7995
                PROBED:   3   4   4    0       40.200       5.0927
                PROBED:   4   6   6    0       84.420       3.7199
                PROBED:   5   8   8    0      144.720      -1.6307
                 TOTAL:  LAST COLUMN

 ** FLUX CALCULATION FINISHED:
    ELAPSED TIME: 00:00:00.80  CPU TIME:  00:00:00.06
 Hibridon> quit
the fluxes have now been appended to the file Job.flx. Rather than display a table of the fluxes, go for several representative plots.
Return to:
Top | FLUX command | Commands | Examples | Hibridon Help