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I. BASIC DERIVATIVES, INTEGRALS, AND SERIES EXPANSIONS

You should know (and know how to use) the following set of basic derivatives, power series

expansions, and integrals

A. Derivatives

dxn

dx
= nxn−1

d exp[f(x)]

dx
= exp[f(x)]

df(x)

dx

d ln[f(x)]

dx
=

1

f(x)

df(x)

dx

d sin(kx)[cos(kx)]

dx
= k cos(kx)[−k sin(kx)]

B. Integrals

∫

xn dx =
1

n+ 1
xn+1

∫

1

x
dx = lnx

∫

exp(ax) dx =
1

a
exp(ax)

∫

x exp(ax2) dx =
1

2a
exp(ax2)

∫

u(x)dv(x) = u(x)v(x) −
∫

v(x)du(x)

The last equation on the right hand side is the general integration by parts expression. As an

example suppose u(x) = x and v(x) = sinx. Then, du(x) = dx and dv(x) = cos x, so that

∫

x cos x dx = x sinx−
∫

sinxdx = x sinx+ cos x

C. Binomial Series

(x+ y)2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3
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(x+y)n = xn+nxn−1y+
n(n− 1)

1 · 2 xn−2y2+. . .+
n(n− 1) . . . (n−m+ 1)

1 · 2 . . . (m− 1) ·m xn−mym+. . .+nxyn−1+yn

Here m designates the term in the expansion (1 ≤ m ≤ n+ 1).

D. Power Series Expansions

The Taylor series expansion is the key

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 +
f (3)(x0)

3!
(x− x0)

3 + . . .

where f ′(x0), f
′′(x0), f

(3)(x0) are the 1st, 2nd, and 3rd derivatives of f(x) evaluated at x = x0.

When the expansion is about x = 0, this reduces to the Maclaurin series

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + . . .

Special cases are

exp(ax) = 1 + ax+
a2x2

2
+

a3x3

6
+ . . .

1

1± ax
= 1∓ ax+ a2x2 ∓ a3x3

ln(1± x) = ±x− x2

2
± x3

3
+ . . .

II. TRANSITIONS BETWEEN ENERGY LEVELS AND SPECTROSCOPY

Consider a transition from an initial level ‘i’ to a final level ‘f ’. The energy difference is

∆Eif = Ef − Ei, where the subscripts ‘f ’ and ‘i’ designate the final and initial energies. The Bohr

equation relates ∆Eif to the frequency of the light that will cause this transition to occur, namely

∆Eif = hν = hc/λ

Here we have used the relation between the frequency and the wavelength of light (λν = c where

c is the speed of light). If we further define the “wavenumber” ν̃ = 1/λ, (note (10/1/16) to be

consistent with the text we are using ν̃ to designate 1/λ) we have

∆Eif = hcν̃
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or

ν̃ = ∆Eif/hc (1)

Let us use a diatomic molecule as an example. The vibrational energies are given by

En = (n+ 1/2)hνv = (n+ 1/2)hcν̃v (2)

where the vibrational frequency is defined by νv = (1/2π)
√

k/µ with k being the force constant

and µ being the reduced mass of the diatomic. This is the circular frequency of the vibration. The

angular frequency ωv is 2π times the angular frequency; in other words ωv =
√

k/µ. I will use n to

designate the vibrational quantum number (n=0, 1, 2, ...) instead of v, because the italic-‘vee’ (v)

is too easy to confuse with ‘nu’ (ν). I have added the subscript ‘vee’ to the frequencies νv and ωv to

distinguish them from the circular and angular frequencies of light. Note that h and h̄ have units

of J·s and νv and ωv have units of sec−1, so that hνv and h̄ωv have units of energy. In the third

term in Eq. (2) I have introduced the vibrational wavenumber, which I will call ν̃v. The units of ν̃v

is 1/length. The book calls ν̃v the “fundamental vibrational frequency” (Tab. 1.4) even thought

this quantity does not have units of frequency.

Now, for a transition from vibrational level n to level n+1, ∆Eif = hνv = hcν̃v , so that Eq. (1)

becomes

ν̃n→n+1 =
hνv
hc

= ν̃v

Consider now rotations (changed, 10/1/2016). The text (McQuarrie and Simon) give a non-

standard definition of the rotational constant. This will be compared here with the standard definition.

For a diatomic molecule, the rotational energies are given by

EJ =
h̄2

2µr2
J(J + 1) =

h̄2

2I
J(J + 1) (3)

where I is the moment of inertia (I = µr2) and µ is the reduced mass of the molecule. The energy

gap for a transition out of rotational level J into rotational level J + 1 is

∆EJ→J+1 = EJ+1 − EJ =
h̄2

2I
2(J + 1)

https://en.wikipedia.org/wiki/Rigid_rotor
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This we can write as

∆EJ→J+1 = 2B(J + 1) (standard definition) (4)

= 2hB(J + 1) (McQuarrie − Simon definition)

In both cases, the constants B and B are called the ”rotational constant”. Note that the units of

B (the standard rotational) are energy (J), while the units of B (the McQuarrie-Simon rotational

constant) are frequency (s−1).

Because ∆E = hν, or ν = ∆E/h, we see from Eq. (4) that for the J → J + 1 transition

νJ→J+1 =
2

h
B(J + 1) = 2B(J + 1)

Since the wavenumber of the transition is ν̃ = 1/λ = ν/c, we find

ν̃J→J+1 =
2

hc
B(J + 1) =

2

c
B(J + 1)

In both the standard and McQuarrie-Simon definition we express the wavenumber for the J → J+1

transition in terms of a rotational constant in wavenumber (s−1) units, B̃.

ν̃J→J+1 = 2B̃(J + 1)

Thus, in terms of either B or B

B̃ =
B

hc
=

B
c

III. CRITICAL POINT OF A VAN DER WAAL’S GAS

The van der Waals equation of state is

P =
RT

V̄ − b
− a

V̄ 2
(5)

At the critical temperature, there occurs an inflection point on the isotherm (the plot of P as a

function of V ). An inflection point is a point where both the first and second derivatives vanish,
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namely

(

∂P

∂V̄

)

T=TC

=

(

∂2P

∂V̄ 2

)

T=TC

= 0

Differentiation of Eq. (5) gives (you should check these results)

∂P

∂V
= − RT

(V̄ − b)2
+

2a

V̄ 3

or

(V̄ − b)2 =
RT

2a
V̄ 3 (6)

Similarly, setting (∂2P/∂V 2) equal to 0 and rearranging gives (again, you should check these

results)

(V̄ − b)3 =
RT

3a
V̄ 4 (7)

We can divide Eq. (7) by Eq. (6) to get

(V̄ − b) =
2a

3a
V̄ =

2

3
V̄

which can be solved to give

V̄C = 3b

A student didn’t like dividing 0 by 0, so here’s an alternate solution: Multiply Eq. (6) by (V̄ − b),

to obtain

(V̄ − b)3 =
RT

2a
V̄ 3(V̄ − b)

Now, since the left-hand-side (l.h.s) of this equation is to the l.h.s. of Eq. (7), we can set the two

r.h.s’s equal, to obtain

RT

2a
V̄ 3(V̄ − b) =

RT

3a
V̄ 4
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This can be simplified to give

V̄C = 3b

Note that we have added a subscript C to indicate that this relation holds only at the critical

point.

Now, you can substitute this expression for VC into Eq. (6) to obtain an expression for TC ,

namely

TC =
8a

27bR

Finally, substituting the expressions for VC and TC into the van der Waals equation of state

gives (corrected 9/14/2014)

PC =
a

27b2

IV. BOLTZMANN DISTRIBUTION AND SUMMATION; INDEPENDENCE OF ZERO

OF ENERGY

Boltzmann postulated that at equilibrium the population in level j is proportional to its energy

nj ∼ exp(−Ej/kT )

The total population is N =
∑

j nj. We’ll assume here that j = 1 corresponds to the lowest level.

The relative (or fractional) population in each level is

pj = nj/N = exp(−Ej/kT )/
∑

j

exp(−Ej/kT ) (8)

This quantity pj is also the probability that level j will be occupied. The sum of all the probabilities

is, of course, equal to 1.

∑

j

pj = 1

Now, suppose we define the zero of energy as the energy of the lowest level. Then for each level

j, the original energies are defined in terms of the energies with respect to the new zero of energy
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(the Ej; see the figure below) as

Ej = Ej +∆E

Now, in terms of the Ej , the fractional populations of Eq. (8) are

E1

E2

E3

E4

E5

E6

E7

0

E1

E2

E3

E4

E5

E6

E7

0

∆E

pj = nj/N = exp[−(Ej +∆E)/kT ]/
∑

j

exp[−(Ej +∆E)/kT ]

Because exp(a+ b) = exp(a) exp(b), we can get rid of the constant factor of exp(−∆E/kT ), to

obtain (I’m counting on you to show this!)

pj = nj/N exp[−(Ej +∆E)/kT ]/
∑

j

exp[−(Ej +∆E)/kT ]

= exp(−∆E/kT ) exp(−Ej/kT )/
∑

j

exp(−∆E/kT ) exp(−Ej/kT )

= exp(−Ej/kT )/
∑

j

exp(−Ej/kT )

We can compare this equation with Eq. (8), namely

pj = nj/N = exp(−Ej/kT )/
∑

j

exp(−Ej/kT ) = exp(−Ej/kT )/
∑

j

exp(−Ej/kT )

in other words, the probability that level j is occupied is independent of our arbitrary choice of
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the zero of energy!

The quantity
∑

j exp(−Ej/kT ) is designated the “partition function” (often denoted by the

letter q) and is the total population (or the total number of states) at temperature T . Thus, the

probability that the system is in level j is

pj =
1

q(T )
exp(−Ej/kT )

Since E1 = 0 (with the shifted zero of energy), you can show that

lim
T→0

q(T ) = 1

The partition function is sometimes denoted by the letter z (instead of q). Note that the letter q

is also used to designate the heat (see Eq. 5.10 of McQuarrie and Simon; ∆U = q +w) which you

sometimes see in differential form as

dU = δQ+ δW

V. RELATION BETWEEN PARTITION FUNCTION AND ENERGY

Let us differentiate the natural logarithm of q. We know that

d ln[f(x)]

dx
=

1

f(x)

df(x)

dx

You can also show that (do this yourself)

dq(T )

dT
=

1

kT 2

∑

j

Ej exp(−Ej/kT ) (9)

Thus,

d ln[q(T )]

dT
=

1

q(T )

1

kT 2

∑

j

Ej exp(−Ej/kT ) (10)

But the average energy 〈E〉 is (by definition the average value of any quantity is the sum over all
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levels of the property in each level multiplied by the probability for that level)

〈E〉 =
∑

j

pjEj

So you can show that

d ln[q(T )]

dT
=

1

kT 2
〈E〉

or

〈E〉 = kT 2d ln[q(T )]

dT
(11)

This is dimensionally correct. The partition function is dimensionless, as is its logarithm.

Consequently, the derivative of ln(q) with respect to temperature has units of 1/T , so that the

quantity

kT 2d ln[q(T )]

dT

has units of kT , which is energy. Thus (happily for us) the units of the left hand side and the right

hand side are the same!

It is perhaps simpler to differentiate first with respect to β. Since

q =
∑

j

exp(−εjβ)

then

d ln q

dβ
= −1

q

∑

j

εj exp(−εjβ) = −〈E〉 (12)

Now, since β = 1/kT or T = 1/kβ, application of the chain rule gives

d

dβ
=

d

dT

dT

dβ
= − 1

kβ2

d

dT
= −kT 2 d

dT

Thus, from Eq. (12) we obtain Eq. (11).
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VI. PARTITION FUNCTION OF AN IDEAL GAS

The energy levels of a particle in a cubic box of length a are

Enx,ny,nz =
h2

8ma2
(

n2
x + n2

y + n2
z

)

= A
(

n2
x + n2

y + n2
z

)

where A = h2/(8ma2). The partition function for translation is then

qt =
∑

nx

∑

ny

∑

nz

exp[−A(n2
x + n2

y + n2
z)β]

but, since exp(a+ b) = exp(a) exp(b), we have

qt =
∑

nx

exp(−An2
xβ)

∑

ny

exp(−An2
yβ)

∑

nz

exp(−An2
zβ)

Each one of these three terms is identical, except that the summation is over a different index, so

we can write

qt =

[

∑

n

exp(−An2β)

]3

Now, since the summation involves very large values of n, we can replace the summation by an

integral and obtain

qt ≈
[
∫

∞

1
exp(−An2β)dn

]3

≈
[
∫

∞

0
exp(−An2β)dn

]3

Since there are so many values of n that contribute we have replaced the lower limit by n = 0

(instead of n = 1) without loss of accuracy Now, since

∫

∞

0
exp(−x2)dx =

π1/2

2

we can do the variable substitution x2 = An2β so that x = n(Aβ)1/2 and dn = (Aβ)−1/2dx with

the result

∫

∞

0
exp(−An2β)dn =

(

π

4Aβ

)1/2
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Use a table of integrals or Wolfram Alpha with the command ‘integral(exp(-a*x^2)x^2) from

0 to infinity’ to verify this result.

Thus, you can show that

lim
n→large

qt =

(

2πmkT

h2

)3/2

V

VII. MAXWELL-BOLTZMANN SPEED DISTRIBUTION

In classical mechanics, all energy levels are allowed. A particle’s motion is defined by its position

and velocity ~v. The kinetic energy of the particle is E(kin) = 1
2ms2, where s is the speed

s = |~v| = (v2x + v2y + v2z)
1/2 (13)

In quantum mechanics, we know that the partition function is a sum over all allowed energy

levels weighted by the degeneracy and the exponential of the energy multiplied by β. In a classical

description, the partition function is the integral over a distribution function,

qt(s;β) = g(s) exp[−E(kin)(s)β]

where g(s) is the number of orientations of ~v for which ~v = s. Here, the distribution function

depends parametrically on β (and, hence, parametrically, on the temperature T ). This is indicated

by the semicolon in the argument of qt.

The degeneracy g(s) is the number of ways we can have ~vx, ~vy and ~vz so that the magnitude

of the velocity is s. This is just the area of a sphere of radius s, namely 4πs2. We are integrating

over the surface of a sphere in velocity space of radius s. To normalize the so-called “velocity”

distribution (in reality, it is a speed distribution), we require that

∫

∞

0
qt(s;β)ds = 1

Knowing that
∫

∞

0 x2 exp(−αx2)dx =
√
π/(4α3/2), you can obtain the following expression for the

www.wolframalpha.com
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normalized “Maxwell-Boltzmann” speed distribution.

qt(s;β) =

(

2β3m3

π

)1/2

s2 exp(−1
2ms2β) =

(

2m3

π(kT )3

)1/2

s2 exp(−1
2ms2/kT ) (14)

Note that this is equivalent to

qt(s;β) = 4π
( m

2πkT

)3/2
s2 exp(−1

2ms2/kT ) (15)

an expression you often see. From either of these equations you can show that the average speed

〈s〉 is

〈s〉 =
∫

∞

0
s qt(s;β)ds =

(

8kT

πm

)1/2

an important result worth remembering. Similarly, you can show that the average value of s2 is

〈s2〉 =
∫

∞

0
s2 qt(s;β)ds =

3kT

m

This implies that the average kinetic energy is

〈KE〉 = 1

2
m〈s2〉 = 3

2
kT

which is identical to the result obtained for the average energy of the particle in a box. The

standard deviation of the velocity (the square root of the variance) is

(

〈s2〉 − 〈s〉2
)1/2

= (3− 8/π)1/2(kT/m)1/2 ≈ 0.67(kT/m)1/2

Finally, the most-probable speed (the values of s for which qt(s) is a maximum, can be obtained

by differentiating qt(s) with respect to s, and setting this to zero. We find

smp =

(

2kT

m

)1/2

https://en.wikipedia.org/wiki/Maxwell–Boltzmann_distribution
https://en.wikipedia.org/wiki/Maxwell–Boltzmann_distribution
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VIII. BOILING AND MELTING OF WATER AND THE HYDROGEN BOND

For water the temperatures of fusion and vaporization, and their associated enthalpies at 1 bar

pressure are given in Table I. In ice there are 4 hydrogen bonds per water molecule. In the gas phase

TABLE I. Reference thermodynamic properties of water in its three phases.

Property H2O(s) H2O(l) H2O(g)

Ttransition(K) 273.15(s → l) 373.15 (l → g)

∆Htransition(kJ/mol) 6.029 (s → l) (0.0 C) 40.657 (l → g) (100 C)

∆H
(o)
f (kJ/mol) –292.6 –286.63 –241.58

G(o)(kJ/mol) –236.59 –237.18 –228.59

S(o)(kJ/mol ·K) 41.8 69.91 188.7

Cp(J/mol ·K) 37.8 K 75.3 (25◦C) 37.47 (100◦C)

ρ(at melting point)(kg/m3) 916.72 999.84 V̄ = RT/P

there are no hydrogen bonds. Therefore, if we could calculate the energy (∆U) of sublimation, and

divide this number by 4, we would obtain an estimate of the strength of a hydrogen bond. The

energy of a phase change (α → β) is given in terms of the enthalphy of the phase change by the

relation

∆Uα→β = ∆Hα→β −∆(PV )α→β

We assume constant pressure, so ∆(PV ) = P∆V . So, ∆Ufus = ∆Hfus − 1atm × (V̄l − V̄s). We

know that

Vl − Vs = M(1/ρl − 1/ρs) = 0.018(1/999 − 1/916) = 1.63 · 10−5m3/mol

Here M is the molar mass (1.8e-4 kg/mol). The volume correction makes a negligibly small

correction, so ∆Ufus ≈ ∆Hfus = ∆H
(o)
f (l)−∆H

(o)
f (s) = 6.00kJ/mol.

For vaporization, the volume correction is larger, since Vg = RT/P = 0.0307m3 at T = 373 K.

So,

∆Uvap = ∆Hvap − 1.01 · 105 × 0.0307 = ∆Hvap − 3100J = 40.657 − 3.1 = 37.56

http://www1.lsbu.ac.uk/water/water_properties.html
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Summing these energies gives

∆Usub ≈ ∆Ufus +∆Uvap = 6.00 + 37.56 = 42.56J/mol

Dividing by 4 gives the average energy of a H-bond (11.02 = 42.56/4 )

For fusion, we have seen that ∆Ufus = 6.00 kJ/mol. To melt ice, then, we need to add energy

roughly equivalent to 0.5 H bonds. Therefore, when ice melts approximately 1/2 an H-bond is

broken.

IX. PRESSURE AND THE PARTITION FUNCTION

We will use kinetic theory to demonstrate the relationship between the pressure and the partition

function

P = kT

(

∂ lnQ

∂V

)

N,T

Here we have used upper-case Q, which represents the total partition function for a system con-

sisting of N atoms (or molecules).

Consider a particle moving with speed v in a cubic box of length a. The momentum of the

particle is mv. For simplicity let’s assume that the particle is moving perpendicular to one of the

faces of the box. When the particle collides with a face, the force exerted on the wall is equal to

the change in momentum. This is ∆p = 2mv. The factor of two arises because the momemtum

changes from +mv to −mv, or vice versa. The number of collisions in unit time with the face is

v/a. Thus, the force exerted on the wall in unit time is 2mv2/a. The area of the wall is a2, so that

the pressure (the force per unit area) is P = 2mv2/a3 = 2mv2/V where V is the volume.

Now, the kinetic energy of the gas is E(kin) = 1
2mv2. So the preceding result is P = 4E(kin)/V .

This is an overestimate, since, on average, the molecule can be moving in the +x, −x, +y, −y, +z,

or −z direction. Thus the pressure on any particular face is 4E(kin)/V divided by 6, or, finally

P =
2E(kin)

3V
(16)

Now, for a particle in a box all the energy is kinetic (we assume the potential energy is zero inside
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the box)

Ej = E
(kin)
j = Enx,ny,nz =

h2

8ma2
(

n2
x + n2

y + n2
z

)

=
h2

8mV 2/3

(

n2
x + n2

y + n2
z

)

Thus, you can show using Eq. (16) that the contribution to the pressure due to a particle in energy

level Ej is (call this contribution Pj)

Pj =
2E

(kin)
j

3V
= −∂Ej

∂V
(17)

So, the average pressure, again due to collisions of a single atom or molecule with the walls of

the container, is equal to the average of Pj , which we can calculate from the partition function q

〈P 〉 = −1

q

∑

j

∂Ej

∂V
exp(−Ejβ) (18)

The partial differentiation is with respect to volume with T held constant (equivalent to β held

constant). From the definition of the partition function you can easily show that

〈P 〉 = 1

β

∂ ln q

∂V
= kT

∂ ln q

∂V
(19)

In fact we have N molecules, so that Q = qN/N ! Consequently, the average pressure exerted

by N molecules is

〈P 〉 = NkT
∂ ln q

∂V
= kT

∂ ln qN

∂V
= kT

∂ lnQ

∂V
(20)

X. ENTROPY OF A TWO-LEVEL SYSTEM

The relation between the partition function and the entropy is

S =
〈E〉
T

+ k lnQ (21)

Consider N non-interacting particles each described by a two-level system, where the particle can

have energy ±ε. An example might be N protons each of which can be in a nuclear spin state

+1/2 or −1/2. Since Q = qN and 〈E〉 = N〈E〉 (where E is the average energy of a single particle),



17

we can write

S = NS = N

(〈E〉
T

+ k ln q

)

The entropy is the sum of the entropies of the individual particles.

Let x = exp(−εβ). Then, as we have discussed in class, q = 1/x+ x = (1 + x2)/x, so that

ln q = − lnx+ ln(1 + x2) = +εβ + ln(1 + x2)

or, using the known power series expansion ln(1 + z) = z − z2/2 + . . .,

k ln q =
ε

T
+ k ln(1 + x2) =

ε

T
+ k

(

x2 − 1

2
x4 + · · ·

)

(22)

and

〈E〉 = −∂ ln q

∂β
= −∂ ln q

∂x

∂x

∂β
= −ε

1− x2

1 + x2
= −ε

(

1− 2x2 + 2x4 + · · ·
)

so that

〈E〉
T

= − ε

T

(

1− 2x2 + 2x4 + · · ·
)

(23)

Combining Eqs. (23) and (22) leads to

S = kx2
(

1 +
2ε

kT

)

+O(x4) + · · ·

A. Limiting behavior

Since limT→0 x = 0, we find

lim
T→0

S = 0

which is what we expect (see Sec. XI below). At high temperature, x → 1 in which case we have

lim
T→∞

S = k ln 2

At high temperature W = 2 (both levels are equally probable).
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XI. GENERAL BEHAVIOR OF ENTROPY AS T → 0

For any system with a non-degenerate ground state the partition function is

q = exp(−E0β) + g1 exp(−E1β) + g1 exp(−E2β) + . . .

= exp(−E0β) [1 + g1 exp(−∆E10β) + g2 exp(−∆E20β) + . . .]

where ∆Ej0 = Ej−E0 (note that this is always a positive number) and gj designates the degeneracy

of the jth level. At low temperature

exp(−∆E20β) << exp(−∆E10β)

and, similarly, for all exp(−∆Ej0β) with j > 2. Consequently, we can retain only the first two

terms

lim
T→0

q = exp(−E0β) [1 + g1 exp(−∆E10β)] = exp(−E0β)(1 + g1x) (24)

where we have defined x = exp(−∆E10β). From this expression, we obtain

lim
T→0

ln q = −E0β + ln(1 + g1x) ≈ −E0β + g1x+O(x2) (25)

We know that the average energy is 〈E〉 = −∂ ln q/∂β, so Using Eq. (25) we obtain

lim
T→0

〈E〉 = +E0 − g1
∂x

∂β
= E0 + g1∆E10x

Insterting this result and Eq. (25) into the general expression for the entropy in terms of 〈E〉 and
q [Eq. (21)], we obtain

lim
T→0

S ≈ E0

T
+

g1∆E10x

T
− E0

T
+ kg1x = kg1x

[

1 +
∆E10

kT

]

At low T , x = exp(−∆E10/kT ) goes to zero faster than its argument, ∆E10/kT , diverges. Thus,

the entropy goes to zero at low T , regardless of the value of the energy gap ∆E10. Consequently,

for any system with a non-degenerate ground state, and regardless of how we chose the zero of

energy (E0) the entropy vanishes at T = 0, which is the Third Law.
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XII. SPONTANTEOUS TRANSFORMATIONS AND APPROACH TO EQUILIBRIUM

In thermodynamics the determination of whether a transformation is spontaneous as well as

the approach to equilibrium is governed by inequalities, involving the entropy and the the two free

energies. I shall review these here.

A. Entropy

Consider a system where we have two equal volumes at different temperatures. Heat is allowed

to flow slowly from one side to another. Since the system is isolated, the heat flow qA from side A

must equal the negative of the heat flow from side B, qA = −qB. The overall change in entropy is

T
A

T
B

thus

dS =
δqA
TA

+
δqB
TB

= δqA

(

1

TA
− 1

TB

)

We know that if TA > TB , then heat will flow out from side A (δqA < 0). Thus dS will be positive.

If the system is at equilibrium, then dS = 0. So dS is positive and gradually decreases to 0, at

which point the two systems are in equilibrium, at the same temperature.

An isolated system that is not in equilibrium will evolve only in such a way that dS > 0. This

is a statement of the Second Law.

In the case of a system which is not isolated, the most useful statement of the Second Law is

dS ≥ δq

T

with the equality pertaining to a reversible process.
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The isothermal expansion of an ideal gas at T1 from V1 to V2 is the perfect illustration of this.

The pressure decreases to P2 = (V1/V2)P1. In a reversible expansion δq = −δw = PdV . For an

irreversible expansion Pext = P2, so that δq = P2dV . Since P2 ≤ P , δqrev > δq. Thus dS will be

≥ δq/T .

B. Helmholz free energy

The Helmholz free energy is defined as the state function

A = U − TS

The differential of A is then

dA = dU − TdS − SdT

For a transformation at constant temperature (dT = 0)

dA = dU − TdS (26)

The First Law states dU = δq + δw. Thus

dA = δq − TdS + δw (27)

We also know from Subsection XIIA that dS ≥ δq/T or TdS > δq (since the temperature is always

positive, the sense of the inequality is not changed when we multiply up by T ). We can also write

this inequality as δq − TdS ≤ 0. Combining this with Eq. (27) gives

dA− δw ≤ 0 (28)

The equality applies for a reversible process There are several consequences of Eq. (28):

1. The change in the Helmholz free energy is equal to the reversible work that accompanies a

transformation.

2. If only PV work is allowed, at constant volume δw = 0. Thus at constant volume [and

constant temperature, the assumption made in deriving Eq. (26)], a reversible transformation
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is characterized by dA = 0. Also, a transformation will occur spontaneously only if dA < 0.

C. Gibbs free energy

We define the Gibbs free energy as the state function G = H − TS. The differential is

dG = dH − TdS − SdT

For a transformation at constant temperature, this becomes

dG = dH − TdS (29)

Knowing that dH = dU +PdV +V dP = δq+ δw+PdV +V dP Remembering that δq−TdS ≤ 0,

we can write this as

dG− (δw + PdV )− V dP ≤ 0

Suppose we keep the pressure constant, then

dG− (δw + PdV ) ≤ 0

Just as in the case of the Helmholz free energy, there are several consequences to this inequality

1. The total work is the sum of PV work and non-PV work δnPV
w (electrical work, for example).

In the case of a reversible transformation δwrev = −PdV + δwnPV
rev . Consequently

dG ≤ δwnPV
rev

Thus, the change in the Gibbs free energy is a measure of the non-PV work that can be

extracted from the transformation. This, obviously, will be of particular importance in the

study of batteries and fuel cells.

2. If there is no non-PV work, then for a spontaneous process at constant temperature and

constant pressure the change in the Gibbs free energy will be < 0. G will decrease until

equilibrium is reached, at which point dG will equal zero.
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D. Gibb’s Paradox

Consider a large volume, containing gas molecules of a single species, partitioned into volumes

V1 and V2. The number densities in each partition are identical, so that

V = V1 + V2; N = N1 +N2; andN/V = N1/V1 = N2/V2

The total entropy is S = S1 + S2, where

V
1
 N

1
V

2
 N

2

S = k lnQ+
〈E〉
T

If the gases are ideal then Q = qN , where

q =

(

2πmkT

h2

)3/2

V

Thus (error corrected in red, 11/20/17)

S1 =
〈E1〉
T

+N1k ln q =
〈E1〉
T

+N1 [C(T ) + lnV1] (30)

where C(T ) = 3
2 ln(2πmkT/h2) (note that C is independent of the volume). If we assume a

monatomic gas, then 〈E1〉 = 3N1kT , so

S1/k = N1 [C(T ) + lnV1 + 3/2] (31)

You can obtain a similar expression for S2 and S.
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Suppose you remove the partition. Then the entropy change is

∆S/k = (S − S1 − S2)/k = (3/2)[N −N1 −N2] +C(T )[N −N1 −N2] + [N lnV −N1 lnV1 −N2 lnV2]

= (N1 +N2) ln(V1 + V2)−N1 lnV1 −N2 lnV2 = N1 lnV/V1 +N2 lnV/V2

Note that the (3/2)kT and C(T ) terms cancel out. Since V ≥ V1 and V ≥ V2, the conclusion is

that ∆S > 0, regardless of the particular values of N1 and N2. This is Gibb’s paradox. Why does

the entropy increase when the partition is removed?

The answer lies in our neglect of particle indistinguishability. In fact

Q =
qN

N !

so that Eq. (31) becomes (we use Stirling’s approximation)

S1/k = N1

[

C(T ) + lnV1 +
3

2
− lnN1 + 1

]

with a similar expression for S2. And, also,

S/k = N

[

C(T ) + lnV +
3

2
− lnN + 1

]

= (N1 +N2)

[

C(T ) + ln(V1 + V2) +
3

2
− ln(N1 +N2) + 1

]

You can then show that if the particles are treated as indistinguishable

∆S/k = (N1 lnV/V1 +N2 lnV/V2 −N1 lnN/N1 −N2 lnN/N2)

Now, because the number densities of both partitions are identical, V/V1 = N/N1 and V/V2 =

N/N2, so that ∆S = 0, which is what we expect.

This is consistent with the essential quantum hypothesis that identical particles are indistin-

guishable. Note that if the particles are indistinguishable then if we take the partition out and

then put it back in at some later time, the ensemble is identical to what we had initially. What

happens if the particles are distinguishable (suppose the particles in the left hand partition are

labelled “red” and the in the right partion, “blue”. Then, if we remove the partition, some of the

red particles will move to the right and some of the blue particles, to the left. If we then put the

partition back in, there will be more disorder than we had initially (hence a greater entropy).
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XIII. BOILING OF WATER

Consider the boiling of water

H2O(l) ↔ H2O(g) (32)

For this reaction, if we examine standard thermodynamics tables (see, for example, Table I above

or the NIST webbook) we find, as we would expect

• the entropy of water vapor is significantly larger than that of the liquid (the vapor phase is

much more disordered)

• the enthalpy of the liquid phase is significantly lower than that of the gas phase, because

each water molecule is more tightly bound to its neighbors in the liquid, where the molecule-

molecule spacings are smaller

Thus, at 298 K, the free energy change for the liquid→vapor transformation [Eq. (32)] is ∆GR =

+8.59 kJ, so that the transformation is not spontaneous. At a pressure of 1 bar (which is understood

in the superscript “o”) water will not boil at 298 K.

For a transformation A → B the equilibrium constant KP can be written as [this is covered in

Chap. 12, Eq. (12.11) of McQuarrie and Simon, which we unfortunately we may not cover this

semester]

lnKP = −∆GR/RT

At T=298, we obtain

lnKP = −8.59× 103/(8.314 × 298) = −3.47 (33)

or, equivalently

KP = e−3.47 = 0.031

which is a small number. For a liquid in equilibrium with its vapor, the ratio of the pressure of the

component in the vapor phase to the total pressure is

PH20

P o
= KP

http://webbook.nist.gov
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Thus, we predict that at 298 K the vapor pressure of H2O should be 0.0311 bar ∼= 23.6 torr. This

estimate agrees extremely well with the measured value of 23.8 torr.

Similarly, you would predict that at an external pressure of 23.8 torr (0.0311 atm) water will

boil at 298 K. If you lower the pressure enough, water will boil at room temperature. Hence, the

unlucky astronaut who develops a pressure leak will end up exploding all over his space ship when

the pressure drops to 0.0313 atm.

Now, let’s see if we can use thermodynamics to predict the boiling point of water at a pressure

of 1 atm. If we increase the temperature at a constant pressure, the Gibbs-Helmholtz equation

(8.61) tells us that

d lnKP

dT
=

∆Ho
R

RT 2

so that

lnKP (T ) = lnKP (T = 298) +
∆Ho

R

R

∫ T

298

dT

T 2

= lnKP (T = 298) +
∆Ho

R

R

[

−
(

1

T

)∣

∣

∣

∣

T

298

]

(34)

At the boiling point, PH20 = 1 bar, so that

lnKP (Tb) = 0

This fact will allow us to use Eq. (1) to predict the boiling point of water. We have

0 = lnKP (T = 298) +
∆Ho

R

R

(

1

298
− 1

Tb

)

From Table I, we see that ∆H
(o)
R = −241.58 + 286.63 = 45.05 kJ/mol. Substituting this into

the previous equation gives [remember Eq. (33)]

0 = −3.47 +
4.51 × 104

8.314

(

3.3557 × 10−3 − 1

Tb

)

(35)

http://intro.chem.okstate.edu/1515SP01/Database/VPWater.html
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The solution to this equation is

Tb = 368.4,

which is within 2% of the true boiling point of water.

Why is it in error? Because we are assuming that the enthalpy difference (∆HR) is constant

over between 298 and 373 K. In fact [Eq. (4.18)]

∆H(373) = ∆H(298) +

∫ T

298
∆CpdT = 45.1× 103 + (37.47 − 75.3)(373 − 298) = 4.0865 × 103

Let’s assume that over the range 298 < T < 373 the enthalpy change is approximately equal to

the average of the values at T=298 (4.510×103) and at T=373 (4.0865×103), namely 43.0 kJ/mol.

If we use this value in Eq. (35),

0 = −3.47 +
43.0 × 103

8.314

(

3.3557 × 10−3 − 1

Tb

)

we predict Tb = 372.5 K, nearly equal to the exact answer.

This demonstrates (a) how the free energy difference controls the position of equilibria and

(b) how knowing the thermodynamic properties well at 298 K, and knowing how these properties

change with temperature allows us to make fundamental predictions about the temperature of

phase changes, a very important aspect of the world around us.

XIV. STATISTICAL MECHANICAL EXPRESSIONS FOR THE HELMHOLZ AND

GIBBS FREE ENERGIES

We know that

S =
〈E〉
T

+ k lnQ

If we assume that the thermodynamic state function U is the same as the statistical-mechanical

average energy, then

A = U − TS = −kT lnQ (36)
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Thus, the Helmholz free energy is (with a minus sign) the thermal energy (kT ) weighted by the

natural logarithm of the number of Boltzmann-weighted available states.

Substitution of Eqs. (20) and (36) into the expression for the Gibbs free energy

G = H − TS = U + PV − TS = A+ PV

gives

G = kT

(

− lnQ+ V
∂ lnQ

∂V

)

XV. ELECTRICAL POTENTIAL, FIELD, AND WORK

Just like the force (a vector quantity) is defined as the gradient of a potential (a scalar quantity),

the vector electric field ~E can be defined in terms of a scalar electrical potential φ

~E = −∇φ (37)

or, in one dimension

E = −dφ

dx
(38)

The fundamental SI electric unit is the ampere (A), which is a unit of current flow. The unit of

charge is the coulomb (C) which is an ampere-second (A·s). The units of electric potential is the

volt (V). From Eq. (37) we see that the unit of electric field then must be V/m.

The electrical (non-PV) work done to move a charge q from a point i to a point f in a constant

electric field ( ~E independent of the coordinates) is

w = q

∫ f

i

~E · d~r = q

∫ f

i
Edx = −q

∫ f

i

dφ

dx
dx = −q (φf − φi) = −q∆φ , (39)

Since work has units of J, we see that 1 J = 1 C·V = 1 A·s·V . Note that Eq. (39) describes the

electrial work done by whatever device moves the charge. You have to be careful, because the

charge of a particle can be both positive or negative (whereas a mass can only be positive).

Positively charged particles will move (if free to do so) towards regions of lower electric potential

(∆φ < 0). Since the units of electric potential are volts, lower electric potential is designated lower

“voltage”. Similarly, a negatively charged particle (an electron, for example) will move towards
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regions of higher voltage. In both these cases the work (−q∆φ) is positive.

In contrast, to move a positive charge into to a position of higher voltage requires electrical

work to be done against the field of the electric force (w < 0). This is equivalent to moving a

mass against a force (pressure is force per unit area). Similarly, the work to transfer a negatively

charged particle from a region of higher voltage to a region of lower voltage is negative.

In both these cases the definition of the sign of w is consistent with the chemists’ definition.

Work is done by the electrical device (w < 0) to move the charge. This is equivalent to the sign

convention for PV work. When a piston expands against an external pressure, work is done by

the engine against the surroundings (w < 0). The engine is equivalent to the electrical device.

Typically, electrical devices are rated by the current flow (I), rather than the total charge, with

I =
dq

dt

which has units of A. Under the assumption that the electric field does not depend on time,

differentiation of Eq. (39) with respect to time gives

P ≡ dw

dt
=

dq

dt

∫ f

i

~E · d~r = I

∫ f

i

~E · d~r = −I∆φ , (40)

where P is the power (with units of J/s or, equivalently A·V). [The SI unit of power (J/s) is

designated a watt (W); not to be confused with the work]. The work done by an electrical device

in which a current of positively charged particles flow at a rate I from higher to lower voltage is

w =

∫

P dt = −∆φ

∫

Idt

Since ∆φ is negative (positively charged particles flow from higher to lower voltage), w is positive.

This implies that electrical work is done on the device.

Because the work is the time integral of the power, electrical work is often quantified by the

units watts-seconds (or kilowatt-hours), rather than Joules, which would be more correct.
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