SHOW ALL WORK/EXPLAIN YOUR ANSWERS FOR FULL CREDIT

Possibly useful relations:

 $k_B = 1.3807 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}; R \text{ (molar gas constant)} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $\ln(1+x) = x - x^2/2 + \dots$ $(1+x)^{-1} = 1 - x + x^2 + \dots$

1. A three-level system has energy levels $-\varepsilon$, 0, and and $+\varepsilon$, where ε is a positive number. There are no degeneracies. In terms of the variable $x = \exp(-\varepsilon\beta) = \exp(-\varepsilon/k_BT)$ the partition function and average energy are given by

$$q = 1/x + 1 + x$$
 and $\langle E \rangle = \frac{x^2 - 1}{1 + x + x^2} \varepsilon$

a. What is the high temperature limit of the entropy? (3 pts) We know that $S = \langle E \rangle / T + k \ln q$. At high temperature $x \to 1$ and the $\langle E \rangle / T$ term goes to zero, so $\lim_{T\to\infty} S = k \lim_{x\to 1} \ln q = k \ln 3$.

You could also say that at high temperature $\Omega = 3$, so that $S = k \ln \Omega = k \ln 3$

b. Determine a power series expansion (in x) for S valid at low temperature. Retain only terms up through order x^2 . (7 pts) First evaluate $\ln q = -\ln x + \ln(1 + x + x^2) = -\ln x + x + x^2 + \dots$ From the definition of x we know that $\ln x = -\varepsilon/kT$, thus

$$k\ln q = \frac{\varepsilon}{T} + x + x^2 + \dots \tag{1}$$

Now, expanding the denominator of the expression for $\langle E \rangle$, we find

$$\frac{\langle E \rangle}{T} = \frac{\varepsilon}{T} (x^2 - 1)(1 - x - x^2 + \ldots) = \frac{\varepsilon}{T} (-1 + x + 2x^2 + \ldots)$$
(2)

Combining Eqs. (1) and (2), we obtain

$$S = \frac{\langle E \rangle}{T} + k \ln q = x(k + \varepsilon/T) + x^2(k + 2\varepsilon/T) + \dots$$

We also know that

$$\lim_{T \to 0} \frac{x}{T} = \frac{\exp(-\varepsilon/kT)}{T} = 0$$

The exponential goes to zero much faster than (1/T) goes to infinity. Thus, since $\lim_{T\to 0} x = 0$, $\lim_{T\to 0} S = 0$, which is expected, since the lowest level is non-degenerate.