Homework Assignment # 6
Due Wed Oct 23, 2019
Consider the transformations shown in Fig. 6.3 (reproduced just below) and discussed in class
step | $P_i$ | $V_i$ | $T_i$ | $P_f$ | $V_f$ | $T_f$ | $\Delta U$ | $w_{rev}$ | $q_{rev}$ | $\Delta S =\int \frac{\delta q_{rev}}{T}$ |
---|---|---|---|---|---|---|---|---|---|---|
A (isothermal) $V_1\to V_2$ |
$P_1$ | $V_1$ | $T_1$ | $\frac{1}{2}P_1$ | $2 V_1$ | $T_1$ | 0 | $-RT_1 \ln 2$ | $+RT_1 \ln 2$ | $R \ln 2$ |
B (adiabatic) $V_1\to V_2$ |
$P_1$ | $V_1$ | $T_1$ | $2^{-5/3}P_1$ | $2V_1$ | $\frac{1}{2}^{2/3}T_1$ $=0.630 T_1$ |
$\frac{3}{2}R\left [\left ( \frac{1}{2}\right )^{2/3}-1\right]T_1$ $=-0.555R T_1$ |
$-0.555 RT_1$ | 0 | 0 |
C (isochoric) $T_1\to T_2$ |
$\frac{1}{2}P_1$ | $2 V_1$ | $T_1$ | $2^{-5/3}P_1$ | $2V_1$ | $T_f=T_2$ $=0.630 T_1$ |
$\frac{3}{2}R (T_2-T_1)$ $=-0.555 R T_1$ |
0 | $-0.555 R T_1$ | $\frac{3}{2} R \int \frac{dT}{T}$ $=\frac{3}{2}R \ln(\frac{1}{2}^{2/3})$ $= - R \ln 2$ |
D (isobaric) $V_1\to V_2$ |
$P_1$ | $V_1$ | $T_1$ | $P_1$ | $2 V_1$ | $2 T_1$ | $\frac{3}{2} R T_1$ | $-P_1 V_1$ $= -R T_1$ |
$\frac{5}{2}R T_1$ | $R(\frac{3}{2}\int \frac{dt}{T}+ \int \frac{dv}{V})$ $=\frac{5}{2}R \ln 2$ |
E (isochoric) $T_1\to T_3$ |
$\frac{1}{2}P_1$ | $2 V_1$ | $T_1$ | $P_1$ | $2 V_1$ | $2T_1$ | $\frac{3}{2}R T_1$ | 0 | $\frac{3}{2}R T_1$ | $\frac{3}{2}R \ln 2$ |
isochoric, so $dV=0$, so $w=0$.
$q=C_V \Delta T = \frac{3}{2}T (T_3-T_2)= ({\rm see\,above\,table}) \frac{3}{2}T (2 T_1 - 0.630 T_1) = 2.055 R$. The units are (J/K $\times$ K) = J.
$dS = dq_{rev}/T = C_V dT/T$ so $\Delta S = \frac{3}{2} R \int dT/T = \frac{3}{2} R ln(T_3/T_2) =\frac{3}{2} R ln (2 T_1 / 0.630 T_1) = \frac{3}{2} R ln (3.175) = \frac{3}{2} \times 1.16 R$
$w=-\int PdV = P(const) \Delta V= -P_3(V_1-V_2)= P_3 V_1$ (positive)
$dH=C_P dT +(dH/dP)_T dP$. But $dP=0$ for isobaric, so $\Delta H = \frac{5}{2}R(T_f-T_i)$.
Now, since $H=U+PV$, $\Delta H = \Delta U + P\Delta V + V\Delta P$. The last term vanishes since $P$ is constant. Thus
$\Delta U = \Delta H - P\Delta V = (5/2)R(T_f-T_i)- P_3 (V_f-V_i)$
$q = \Delta U - w = \frac{5}{2}R(T_f-T_i)- P_3 (V_f-V_i)+ P_3(V_f-V_i)=\frac{5}{2}R(T_f-T_i)$ (We could also solve this by remembering that
$C_P=\frac{5}{2}R$ is the heat capacity at constant pressure, so $q_P=\frac{5}{2}R \Delta T$
Now, $dS =(\delta q_{rev}/T) dT = C_P dT/T$. So, $\Delta S = C_P ln(T_f/T_i) = C_P \ln(1/2) = -\frac{5}{2} R \times 0.693$
$\delta U = \frac{3}{2}R T_1 -\frac{3}{2}R T_1 -0.555RT_1 - (-0.555RT_1) = 0$, which we expect.
$w = -RT_1-0+0-(-0.555RT_1) = -0.445 RT_1$
$q = \Delta U - w = +0.445 RT_1$
$\Delta S = \frac{5}{2}R \ln 2-\frac{3}{2}R\ln 2- R \ln 2 -0 = 0$ (which we expect)