From the ideal gas law, $P_b=NRT_h/V_2$ and $P_d=NRT_l/V_1$.
Step
Reversible expansion and compression
Work
Heat
1
$-NRT_h\ln(V_2/V_1)$
$+NRT_h\ln(V_2/V_1)$
2
0
$-C_{\rm V}\Delta T$
3
$+NRT_l\ln(V_2/V_1)$
$-NRT_l\ln(V_2/V_1)$
4
0
$+C_{\rm V}\Delta T$
$\oint$
$-NR\ln(V_2/V_1)(T_h-T_l)$
$+NR\ln(V_2/V_1)(T_h-T_l)$
Step
Irreversible
Work
Heat
1
$-NRT_h\Delta V/V_2$
$+NRT_h\Delta V/V_2$
2
0
$-C_{\rm V}\Delta T$
3
$+NRT_l\Delta V/V_1$
$-NRT_1\Delta V/V_1$
4
0
$+C_{\rm V}\Delta T$
$\oint$
$-NR\Delta V\left (T_h\,/V_2-T_l\,/V_1\right )$
$+NR\Delta V\left (T_h\,/V_2-T_l\,/V_1\right )$
Obviously if the temperatures and the volumes don't satisfy the inequality $T_h \gt T_l \,(V_2/V_1)$, then the efficiency will turn out to be a negative number (indicative that the whole cycle is not producing work!).