Homework Assignment # 6

Due Wednesday April 3, 2019

Consider the transformations shown in Fig. 6.3 (reproduced just below) some of these we will discuss in class on 4/3


The following table lists the initial and final pressures, temperatures, and volumes, and well as $\Delta U,\,w,\,q$, and $\Delta S$ for the five reversible transformations shown in the figure above. One mole of a monatomic ideal gas is assumed. The directions of each transformation are indicated in the first column.
step $P_i$ $V_i$ $T_i$ $P_f$ $V_f$ $T_f$ $\Delta U$ $w_{rev}$ $q_{rev}$ $\Delta S =\int \frac{\delta q_{rev}}{T}$
A (isothermal)
$V_1\to V_2$
$P_1$ $V_1$ $T_1$ $\frac{1}{2}P_1$ $2 V_1$ $T_1$ 0 $-RT_1 \ln 2$ $+RT_1 \ln 2$ $R \ln 2$
B (adiabatic)
$V_1\to V_2$
$P_1$ $V_1$ $T_1$ $2^{-5/3}P_1$ $2V_1$ $\frac{1}{2}^{2/3}T_1$

$=0.630 T_1$

$\frac{3}{2}R\left [\left ( \frac{1}{2}\right )^{2/3}-1\right]T_1$

$=-0.555R T_1$

$-0.555 RT_1$ 0 0
C (isochoric)
$T_1\to T_2$
$\frac{1}{2}P_1$ $2 V_1$ $T_1$ $2^{-5/3}P_1$ $2V_1$ $T_f=T_2$

$=0.630 T_1$

$\frac{3}{2}R (T_2-T_1)$

$=-0.555 R T_1$

0 $-0.555 R T_1$ $\frac{3}{2} R \int \frac{dT}{T}$

$=\frac{3}{2}R \ln(\frac{1}{2}^{2/3})$

$= - R \ln 2$

D (isobaric)
$V_1\to V_2$
$P_1$ $V_1$ $T_1$ $P_1$ $2 V_1$ $2 T_1$ $\frac{3}{2} R T_1$ $-P_1 V_1$

$= -R T_1$

$\frac{5}{2}R T_1$ $R(\frac{3}{2}\int \frac{dt}{T}+ \int \frac{dv}{V})$
$=\frac{5}{2}R \ln 2$
E (isochoric)
$T_1\to T_3$
$\frac{1}{2}P_1$ $2 V_1$ $T_1$ $P_1$ $2 V_1$ $2T_1$ $\frac{3}{2}R T_1$ 0 $\frac{3}{2}R T_1$ $\frac{3}{2}R \ln 2$
  1. Verify all the entries for steps B and C (we will do this for steps A, D, and E in class).
  2. Consider an isobaric transition that goes from $P_3,V_2$ to $V_1$. What will be the values of $P_f$ and $T_f$ for this transition?
  3. Derive $\Delta U,\,w,\,q$ and $\Delta S$ for (all processes are reversible)
    1. An isochoric transition that goes from $P_3,V_2,T_2$ to $P_1,V_2,T_3$.
    2. The isobaric transition defined in question 2) above.
    3. The cyclic process $P_1,V_1,T_1\to P_1,V_2,T_3\to P_3,V_2,T_2 \to P_1,V_1,T_1$.