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I. INTRODUCTION

II. STATE-TO-STATE RATE CONSTANTS

A. Inelastic collisions with a structureless atom

For simplicity, we restrict ourselves to the situation where we have a molecule in state |i〉

with rotational degeneracy (2ji+1) and internal energy εi which collides with a structureless

particle and undergoes a transition to state |f〉 with rotational degeneracy (2jf + 1) and

internal energy εf . The collision between the molecule and the structureless particle can be

characterized by the initial velocity and the impact paramater b, as shown in Fig. 1.

θ

dθ

b

db

v

FIG. 1. Scattering of an incident beam of particles by a target (taken from fig. 3.1 of H. Goldstein,

Classical Mechanics).

At each impact parameter, there is a probability Pif (b) that an inelastic transition will

take place from state |i〉 to state |f〉. The overall probability, integrated over all impact

parameters, is then
∫ ∞

0
2πbPif(b)db .

The weighting by 2πb occurs because collisions at impact parameter b can occur anywhere

on the circumference of a circle of radius b.

This integral, which has the dimensions of area, is called the inelastic “cross section”. Be-

fore the collision, the angular momentum associated with the relative motion of the molecule

and the target is ~l = ~b×~p = µvb, where µ is the collision reduced mass. In quantum mechan-

ics, this relation becomes J + 1/2 = µvb/h̄, where J is restricted to integer values. Thus,
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the cross section, in quantum mechanics, is

σi→f(v) =
2πh̄2

(µv)2

∞
∑

J=0

(J + 1/2)P J
if(v) =

π

k2
i

∞
∑

J=0

(2J + 1)P J
if(v) (1)

Here ki, the wavevector in the initial state, is

k2
i =

2µEx

h̄2 =
2µ(E − εi)

h̄2

where Ec is the initial translational energy, E is the total energy, and εi is the internal energy

in state |i〉, with E = Ec + εi. Note that the continuously variable transition probability

Pif(b) is here replaced by a discrete transition probability which depends on the particular

value of the angular momentum. Now, suppose the initial and final levels are characterized

by degeneracies (2ji+1) and (2jf +1). Then, the cross section, summed over the rotational

degeneracy of the product state and averaged over the rotational degeneracy of the initial

state, is

σi→f(E) =
π

(2ji + 1)k2
i

∑

J

∑

mi,mf

(2J + 1)P J
jimi,jfmf

(E)

=
π

(2ji + 1)k2
i

∑

J

∑

mi,mf

(2J + 1)
∣

∣

∣T J
jimi,jfmf

(E)
∣

∣

∣

2
(2)

Here, T designates an T−matrix element, the square of which is the transition probability;

and mi and mf are the space-frame projection quantum number of the initial and final

rotation levels of the molecule. In Eq. (2) the independent variable is now the total energy

rather than the initial translational velocity. Note that we refer here to the cross section at

total energy E , whereas in Eq. (1) the cross section is written as a function of the collision

velocity. There is a one-to-one correspondence between the two independent variables, since

v = (2µEc)
1/2 = [2µ (E − εi)]

1/2

Now, the T matrix is symmetric – which is a consequence of time reversibility – so that

the transition probabilities satisfy microscopic reversibility

P J
jimi,jfmf

(E) = P J
jfmf ,jimi

(E)
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Note that this relation applies to the transition probabilities at the same total energy.

Because of this symmetry, we can relate the i → f cross section given by Eq. (2) to the

equivalent equation for the f → i cross section, obtaining

(2ji + 1)k2
i σi→f (E) = (2jf + 1)k2

fσf→i(E)

or

(2ji + 1) (E − εi) σi→f(E) = (2jf + 1)(E − εf)σf→i(E) (3)

This equality applies to the i → f and f → i cross sections at the same total energy but

not at the same collision energy.

The rate of collision induced transitions is equal to the cross section times the incoming

flux (number of particles impinging on the target per unit time per unit area). By elementary

kinetic theory, the flux is just equal to the relative velocity times the number density of

particles (ρ). Thus the bimolecular rate is

dni→f

dt
= ρki→f(v) = ρvσi→f(v)

where ki→f(v) is the “rate constant” (some people call this the rate “coefficient”) at relative

velocity v, and ρ is the number density of the collision partner. The thermal rate constant

is given by the average of k(v) over a Maxwell distribution of relative velocities

k(T ) =
∫ ∞

0
k(v)f(v)dV

where

f(v) =

√

2

π

(

µ

kBT

)3

v2 exp(−µv2/2kBT )

and kB is Boltzmann’s constant.

We can convert this integration to extend over collision energy Ec, rather than collision

velocity, using the relations Ec = µv2/2, v = (2Ec/µ)
1/2, and dv

√

2/µE−1/2
c dEc. We obtain

ki→f(T ) =

[

8

πµ (kBT )
3

]1/2
∫ ∞

0
σi→f (E)Ec exp (−Ec/kBT )dEc (4)
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We can then convert the integration variable from collision energy to total energy, obtaining

ki→f(T ) =

[

8

πµ (kBT )
3

]1/2
∫ ∞

εi
σi→f (E)(E − εi) exp [− (E − εi) /kBT ]dE

=

[

8

πµ (kBT )
3

]1/2

exp (εi/kBT )
∫ ∞

0
σi→f (E)(E − εi) exp (−E/kBT )dE (5)

Because the cross section vanishes unless the total energy E is greater than the larger of

εi and εf , the range of integration can be set to {0,∞} without any loss of generality (as

we have done in the 2nd line of the previous equation). By switching the indices i and f in

the last equation we obtain an equivalent relation for the f → i rate constant:

kf→i(T ) =

[

8

πµ (kBT )
3

]1/2

exp (εf/kBT )
∫ ∞

0
σf→i(E)(E − εf) exp (−E/kBT )dE (6)

Substituting Eq. (3) into the last equation, we obtain

kf→i(T ) =

[

8

πµ (kBT )
3

]1/2 [
2ji + 1

2jf + 1

]

exp (εf/kBT )
∫

σi→f(E)(E − εi) exp (−E/kBT )dE

Relating this equation to Eq. (5), we can show that

(2jf + 1) exp(−εf/kBT )kf→i(T ) = (2ji + 1) exp(−εi/kBT )ki→f(T ) (7)

which is the fundamental detailed balance relation. This can be written, equivalently, as

kf→i(T )

ki→f(T )
=

(2ji + 1)

(2jf + 1)
exp (∆E/kBT ) (8)

where

∆E = εf − εi (9)

.
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1. High- and low-temperature limits

It is worthwhile examining the low- and high-temperature limiting cases. At high tem-

perature where kBT >> ∆E and limT→∞ exp(∆E/kBT ) = 1 we obtain

lim
T→∞

kf→i(T )

ki→f(T )
=

(2ji + 1)

(2jf + 1)

Thus, at high temperature the ratio of the backward to forward rate constants is just the

inverse of the ratio of the rotational degeneracies. Imagine that all m → m′ transitions

are equally probable. Then the larger rate will occur for transitions into the state with the

largest number of m projection states.

At low temperature ∆E >> kBT , so that the rate for collisional de-excitation (εf < εi)

will become much larger than the rate for collisional excitation. Again, this is reasonable:

At low temperature, where the average translational energy is small, it will be much harder

to go uphill than downhill.

We remember that the Boltzmann probability for population of level j is

pj(T ) = Zr(T )
−1(2j + 1) exp(−εj/kBT )

with the rotational partition function defined by

Zr(T ) =
∑

j

(2j + 1) exp(−εj/kBT )

Thus, Eq. (7) is equivalent to

pfkf→i(T ) = piki→f(T ) (10)

which is perhaps the simplest expression: The forward and reverse rates, weighted by the

fractional Boltzmann populations of the two states at temperature T , are equal.

B. Overall inelastic collisional depletion and infill rates

Consider a situation a particular initial rotational level i of a given vibrational mani-

fold is populated (as, for example, by laser excitation from a lower state) and where one

subsequently monitors the population of this initially populated level. If none of the other
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neighboring rotationally levels is populated at t = 0, then the time rate of change of the

initially populated level is

dni

dt
= −ρni

∑

f 6=i

ki→f ≡ −ρnik
(L)
i (11)

where k
(L)
i (T ) is the rate constant for loss of population out of this initial level.

In this experiment the population in level i follows first-order decay kinetics and initially

decreases exponentially with time. At longer time, as the populations in the other levels

becomes significant, the kinetic equations must be modified to include back reactions. Even-

tually, the evolution of the level populations must reflect the thermalization of the rotational

populations in the vibrational level of interest.

Now, consider a situation where all the rotational levels are in thermal equilibrium and

where we initially deplete level i and monitor the collisional refilling of this level. The time

rate of change of the population of the initially depleted level is

dni

dt
= ρ

∑

f 6=i

nfkf→i (12)

(we can initially ignore back reaction out of the depleted level).

If the rotational states are at thermal equilibrium at temperature T , then

nf = pf(T )n

where n is the total population of the vibrational manifold under consideration. Thus, we

can transform Eq. (12) to
dni

dt
= ρn

∑

f 6=i

pfkf→i (13)

We can use the detailed balance relation [Eq. (10)] to rewrite the preceding equation as

dni

dt
= ρn

∑

f 6=i

piki→f = ρni

∑

f 6=i

ki→f = ρnik
(L)
i (14)

Thus, the refilling rate constant is equal in magnitude (and opposite in sign) to the loss rate

that one would measure in a more typical depletion experiment.
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C. Reactive collisions

In the case of a reactive collision, Eq. (2) still remains valid, but because the collision

reduced mass differs from reactants to products, since (for an A+BC→AB+C reaction)

µreactant =
MA(MB +MC)

MA +MB +MC

and

µproduct =
MC(MA +MB)

MA +MB +MC

the equation for microscopic reversibility [Eq. (3)] becomes (replacing the indices i and f

by r and p)

(2jre + 1)µr (E − εr) σr→p(E) = (2jp + 1)µp(E − εp)σp→r(E) (15)

Note that this equation is a just a statement of conservation Equations (4), (5), and (6) still

remain valid, except that for the occurrence of the two different reduced masses. After a

little algebra, one obtains a detailed balance relation similar to Eq. (8)

k
(b)
j′→j(T )

k
(f)
j→j′(T )

=

[

µr

µp

]3/2
(2j + 1)

(2j′ + 1)
exp (∆Ej→j′/kBT )

=

[

MA(MB +MC)

MC(MA +MB)

]3/2
(2j + 1)

(2j′ + 1)
exp (∆Ej→j′/kBT ) (16)

This relation applies to reaction from a particular jr = j rotational level of the reactants

to a particular jp = j′ rotational level of the products. For simplicity the superscript index

f (forward) implies reaction from reactant to products while the superscript b (backward)

refers to reaction of the products to yield reactants. The exoergicity, defined in the case of

an inelastic collision by Eq. (9), has to be modified here to

∆Ej→j′ = ∆Erxn + εj′ − εj

where ∆Erxn is the reaction (endo/exo)ergicity (the energy of reaction). Note that ∆Erxn

is negative for an exoergic reaction. Thus

exp(∆Ej→j′/kBT ) = exp(∆Erxn/kBT ) exp(εj′/kBT ) exp(−εj/kBT ) (17)
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Here εj is the rotational energy of level j with the zero of energy taken as the ground rotational

level.

Thus, Eq. (16) can be rewritten as

k
(b)
j′→j(T ) = k

(f)
j→j′(T )

[

µr

µp

]3/2
(2j + 1) exp(−εj/kBT )

(2j′ + 1) exp(−εj′/kBT )
exp (∆Erxn/kBT ) (18)

Now, the Boltzmann probability that rotational level j is occupied at temperature T is

pj(T ) =
(2j + 1) exp(−εj/kBT )

∑

j(2j + 1) exp(−εj/kBT )
=

(2j + 1) exp(−εj/kBT )

Zr(T )

where Zr(T ) is the rotational partition function. In other words

(2j + 1) exp(−εj/kBT ) = pj(T )Zr(T ) (19)

If you introduce this equation and Eq. (17) into Eq. (16), you obtain

pj′(T )Z
(p)
r (T )k

(b)
j′→j(T ) =

[

µr

µp

]3/2

exp (∆Erxn/kBT )pj(T )Z
(r)
r (T )k

(f)
j→j′(T ) (20)

Now, let us define a thermally-averaged total rate constant which is the sum, over all

accessible final rotational levels, and the average, over all populated initial rotational levels,

of the state-to-state rate constant. The average over the initial states is just the sum over

the rate out of each initial state weighted by the probability that the initial rotational level

is populated, namely pj(T ). For the forward (reactant→product) direction this thermally-

averaged rate constant is

kf(T ) =
∑

j

∑

j′
pj(T )k

(f)
j→j′(T )

and, for the backward (product→reactant) direction

kb(T ) =
∑

j

∑

j′
pj′(T )k

(b)
j′→j(T )

Since the masses, the rotational partition functions, and the exp (∆Erxn/kBT ) term in

Eq. (20) do not depend on j and j′, we can carry out these sums directly, just by summing
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Eq. (20) over j and j′. We obtain

Z(p)
r (T )

∑

j,j′
pj′(T )k

(b)
j′→j(T ) =

[

µr

µp

]3/2

exp (∆Erxn/kBT )Z
(r)
r (T )

∑

j,j′
pj(T )k

(f)
j→j′(T )

We identify the terms under the double summation on both the left and right-hand sides as

the thermally-averaged total rate constants, so that we can simplify this equation to give

k(b)(T ) =

[

µr

µp

]3/2
Z(r)

r (T )

Z
(p)
r (T )

exp (∆Erxn/kBT )k
(f)(T ) (21)

This is, I believe, the correct detailed balance relation for the overall reaction rate constants.

Exercise

Exercise #1 Generalize the preceding development to a reacting system which has denumer-

able rotational and vibrational levels, to obtain an a detailed balance relation which is an

extension of Eq. (21, namely

k(b)(T ) =

[

µr

µp

]3/2
Z(r)(T )

Z(p)(T )
exp (∆Erxn/kBT )k

(f)(T ) (22)

where the partition functions are the sums over all vibration-rotation states of the reactants

and/or products, weighted by their degeneracies.

D. Limiting behavior This subsection is not yet finished

It is worthwhile to examine the limiting behavior of Eq. (22). First, for exoergic reactions,

∆Erxn is negative, and usually much larger than kBT . Thus the factor exp(∆Erxn/kBT )

will be small, implying that the backward reaction, which is uphill, will have a rate constant

which is significantly smaller than that for the forward reaction, which is downhill.

Now, suppose that the reaction is nearly thermoneutral, so that ∆Erxn ≈ 0. In this case

the ratio of the partition functions will govern the relative size of the forward and backward
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reactions. In a statistical limit, reaction from any reactant state to any product state will

be equally probable. Thus, if there are far more reactant states than product states, the

backward reaction will be favored. The partition functions are sums over all the available

states, weighted by their Boltzmann factors, and thus are the effective number of available

states at a given temperature T . We see from Eq. (22) that, for a thermoneutral reaction,

reaction will favor the side with the higher density of states.

An interesting special case is an isotopic exchange reaction, for example,

D + HCl → H+DCl

Here, the heat of reaction is just the difference between the zero-point energies of DCl and

HCl, namely

∆Erxn ≈
1

2
[ωe(DCl)− ωe(HCl)]

III. RELAXATION KINETICS

A. Master equation: generalities

Consider a system of N levels at temperature T . The rate of change of the population in

level i is equal to an overall loss rate plus an infill rate due to transfer from all other levels.

These rates are proportional to the rate constants multiplied by the number density of the

collision partner, ρ. In other words

dni/dt = ρ



−kiini +
∑

f 6=i

nfkf→i(T )



 (23)

or, explicitly

dn1/dt = ρ [−n1k11(T ) + n2k21(T ) + n3k31(T ) + . . .+ nNkN1(T )]

dn2/dt = ρ [+n1k21(T )− n2k22(T ) + n3k32(T ) + . . .+ nNkN2(T )]

dn3/dt = ρ [+n1k31(T ) + n2k23(T )− n3k33(T ) + . . .+ nNkN3(T )]

... =
...

dnN/dt = ρ [+n1kN1(T ) + n2k23(T ) + n3k3N(T ) + . . .− nNkNN(T )] (24)
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We can write these coupled first-order differential equations in matrix notation as

dn/dt = ρKn (25)

where n is the column vector of populations in states {1...N} and K is the matrix of rate

constants. This set of coupled first-order differential equations is called a master equation.

The if th off-diagonal matrix element of K is the f → i rate constant and the diagonal

matrix element Kii is equal to the negative of the total loss rate of level i. This reversed

notation (the if th element of the K matrix is the rate constant for the transition from level

f to level i) is also referred to as Einstein notation.

In addition the off-diagonal matrix elements of the K matrix are related by the detailed

balance relation [Eq. (8)], which we rewrite here as

kfi(T )

kif(T )
=

(2ji + 1)

(2jf + 1)
exp (∆E/kBT )

or, more generally
kfi(T )

kif(T )
=

gi
gf

exp (∆E/kBT )

where gf and gi are the degeneracies of levels f and i.

The rate of change in time of the total population n =
∑

i ni is then given by summing

Eqs. (24), we obtain

dn/dt =
∑

i

dni/dt

= n1



−k11 +
∑

f 6=1

kf1(T )



+ n2



−k22 +
∑

f 6=2

kf2(T )



+ . . .+ nN



−kNN +
∑

f 6=N

kfN(T )





In general, dn/dt has to be equal to zero, for all choices of ni. Thus, the terms multiplying

each ni in the preceding equation must vanish, separately, so that

kii =
∑

f 6=i

kfi (26)

http://en.wikipedia.org/wiki/Master_equation
http://en.wikipedia.org/wiki/Einstein_notation
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Inserting this result into Eq. (23) gives the expected relation

dni/dt = ρ



−
∑

f 6=i

ki→f(T )ni +
∑

f 6=i

nfkf→i(T )



 = ρ



−
∑

f 6=i

[−niki→f + nfkf→i(T )]



 (27)

As we will demonstrate in the Appendix, all the eigenvalues of the rate-constant matrix

K are ≤ 0 and, specifically, one eigenvalue is equal to zero.

B. Master equation: analytic solution

Now, let us construct the diagonal matrix Π, whose diagonal elements are the Boltzmann

populations, namely

Πij = δijgi exp (−Ei/kT ) ,

and the square root of this matrix Π
1/2 where

Π
1/2
ij = δij [ gi exp (−Ei/kT ) ]

1/2 ,

and

Π
1/2 ×Π

1/2 = Π

We can recast Eq. (25) as

dn/dt = ρΠ1/2
[

(

Π
1/2

)−1
KΠ

1/2
]

(

Π
1/2

)−1
n

or

dñ/dt = ρ
[

(

Π
1/2

)−1
KΠ

1/2
]

ñ = ρK̃ ñ (28)

where

K̃ =
(

Π
1/2

)−1
KΠ

1/2

Here, the new population vector ñ is equal to the populations n by

ñ =
(

Π
1/2

)−1
n (29)
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or

ñi(t) = ni(t)/ [gi exp(−Ei/kT )]
1/2

The K̃ matrix is symmetric, so that it can be diagonalized by an orthogonal transforma-

tion D

D
T
K̃D = Λ̃

where Λ̃ is a diagonal matrix of real eigenvalues and where

D
T
D = DD

T = I

The columns of D are the eigenvectors of K̃.

We can then simplify Eq. (28) as

dñ/dt = ρK̃ ñ = ρDD
T
K̃DD

T
ñ = ρDΛ̃D

T
ñ

or, after premultiplying by D
T ,

dN /dt = ρΛ̃N

where

N = D
T
ñ = D

T
(

Π
1/2

)−1
n (30)

Thus, each component of the population vector N relaxes exponentially (and indepen-

dently), namely

Ni(t) = Ni(0) exp(ρΛ̃it)

Exercise

Exercise #2. Show that the eigenvalues of K̃ are identical to the eigenvalues of K.

Because of the identity you’ve just demonstrated in the preceding exercise, the eigenvalues

of K̃ are negative semi-definite. Since one eigenvalue of K is zero, one eigenvalue of K̃ will

also be zero. The eigenvector which corresponds to this eigenvalue – let’s call it N∞ –

corresponds to the equilibrium population distribution, since at long time all the other
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eigenvectors, which correspond to negative eigenvalues, will decay to zero. Now the N

eigenvectors (the columns of the D matrix), are expansions in the ñ basis, which are the

populations divided by the square root of the Boltzmann weights. To transform the N

eigenvectors into the populations we need to invert Eq. (29), obtaining

n∞ = Π
1/2

D

This should, of course, be the Boltzmann population, namely

(n∞)i =
1

Z(T )
gi exp(−Ei/kT )

where

Z(T ) =
∑

i

gi exp(−Ei/kT )

C. Relaxation of an initial population

Suppose we have an initial population n0. In terms of the ñ basis, the initial population

is [from Eq. (29)] ñ0 =
(

Π
1/2

)−1
n0. We can expand this distribution in terms of the

eigenvectors of K̃, to get

N0 = D
T
ñ0 = D

T
(

Π
1/2

)−1
n0

The individual components of the vector N0 are the initial magnitudes of the individual

eigenvectors of K̃. As time goes on, these magnitudes decay exponentially, so that at any

later time, the populations in the various ni levels are

n(t) =
∑

i

Π
1/2

DN0 exp(ρΛt)

Note that here N0 exp(ρΛt) is a column vector, with elements Ni(t = 0) exp(ρΛit).
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D. Master equation: numerical solution

Another method of solving the master equation is based on the finite difference approxi-

mation to the derivative
df

dt

∣

∣

∣

∣

∣

t+δt

≈
f(t + δt)− f(t)

δt

so that

n(t + δt) ≈ ρ (Kδt+ I)n(t)

If we start at t = 0 and repeat this propagation m times, we obtain

n(mδt) ≈ ρ (Kδt+ I)m n(t = 0)

E. Matlab-based simulation

To illustrate the details of population relaxation, I have attached a Matlab script

(master equation.m) which solves, following the diagonalization procedure presented above,

the master equation for the relaxation of M coupled rotational levels, ranging from j = 0 to

j = M − 1, with degeneracies 2j + 1 and energies εj = Bj(j + 1), where B is the rotational

constant. The rate matrix is modelled by an exponential gap approximation in which the

lower triangle of the rate matrix is given by

kij(T ) = kmax exp [α (εj − εi) /kBT ] , i > j

where kmax and α are two parameters. The upper triangle of the rate matrix is given by

detailed balance

kij(T ) =
gj
gi

exp [(εi − εj)/kBT ] , i < j

This model is applied in the script master equation.m to a system defined by the values

given in Table I on the following page.

The script determines the relative populations of each j level as a function of time, ranging

from t = 0 to t = 5 ps in steps of 10 fs for two different initial conditions: (1) when only the

j = 6 level is populated and (2) when all the levels are thermally populated and then the

j = 6 level initially bleached. Figure 2 shows two results from the first simulation. In the

http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
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TABLE I. Parameters used in simulation of the solution of the master equation, contained in the

Matlab script master equation.m.

parameter value

M 15

B 10 cm−1

kmax 5× 10−11 cm3 molecule−1 s−1

α 2

T 1000 K

ρ 3.2 · 1022 molecule cm−3

right panel we plot the time evolution of the average rotational energy

Eav(t) =
M−1
∑

j=0

εjnj(t)

/

M−1
∑

j=0

nj(t)

where εj = Bj(j + 1).
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FIG. 2. Results of simulations run by the Matlab script master equation.m. Left panel: Relative

populations after initially populating just the j = 6 rotational level after an elapsed time of 0.2

ps. Right panel: Relaxation of the average rotational energy. The green line marks the long-time

(Boltzmann) limit.

Exercise

http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
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Exercise #2. The plot presented in Fig. 2 shows that in the case of initial population in just

the j = 6 level, the average rotational energy grows from εj=6 at t = 0 up to the Boltzmann

limit at T = 1000, namely

Erot(T ) =
M−1
∑

j=0

(2j + 1)εj exp(−εj/kBT )

/

M−1
∑

j=0

(2j + 1) exp(−εj/kBT )

If the average rotational energy were to relax exponentially, we would have

Eav(t) = A+B exp(−κt) (31)

where A and B are constants. How are these constants related to εj=6 and Erot(T )?

Exercise #3. By fitting the data from the matlab script master equation.m, obtain an

estimate of the relaxation rate κ. If you were to measure κ, what inferences could you make

about the elements in the rate matrix K? Suppose you limited yourself just to short time.

What relation is there between the observed relaxation rate and and the elements of K?

Exercise #4. The matlab script master equation.m also allows you to simulate an experi-

ment in which the population in the j = 6 level of an initially thermal population is depleted,

and then is filled in by collisions. For this scenario, come up with a simple expression for

the time-dependence of the rotational energy similar to Eq. (31) and then fit the computed

values of the average rotational energy as a function of time to obtain an estimate of the

relaxation rate κ. Here also, if you were to measure κ, what inferences could you make

about the elements in the rate matrix K?

IV. APPENDIX: PROPERTIES OF THE EIGENVALUES OF THE RATE

MATRIX

We can show that all the eigenvalues of the K matrix are negative by making use of

the Gershgorin circle theorem. This theorem states states that for any complex N × N

matrix all eigenvalues lies within at least one of the N so-called Gershgorin disks. The ith

disk is a closed circle centered at the diagonal matrix element Aii with radius Ri equal to
∑

j 6=i |Aji|. Because all the offdiagonal elements of the K matrix are positive, this implies

http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
http://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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that Ri =
∑

j 6=i Aji. Now, in the K matrix each diagonal element is equal to the sum of the

off-diagonal diagonal elements in column i. Thus, Ri = |Aii|. Consequently, each Gershgorin

disk is centered at −Aii and is large enough to touch the origin from below. This then shows

that all the eigenvalues of the K matrix are negative semi-definite.

In other words, if we diagonalize K by the similarity transformation C

KC = CΛ

or

C
−1
KC = Λ

where Λ is a diagonal matrix, then Λi ≤ 0, ∀i. In addition, because of Eq. (26), the rows of

the K matrix are not linearly independent, so that the matrix is singular, and has at least

one zero eigenvalue.

As an example, we consider a 3× 3 rate constant matrix, obtained by using the Matlab

script master equation.m with the parameters of Table I except N = 2 and T = 100K.

The K matrix is

K = 10−11













−3.7015 1.2499 0.4218

2.8121 −2.8314 1.6872

0.8895 1.5815 −2.1090













(32)

This matrix does satisfy detailed balance. The matrix of eigenvalues is

Λ = 10−11













0 0 0

0 −5.3061 0

0 0 −3.3358













Figure 3 on the next page shows the three Gershgorin disks, centered on the three diagonal

elements of matrix (32), as well as the location of the three eigenvalues.

[1] The authors are also grateful to Gregory Hall, Christopher Jarzynski, Harris Silverstone and

Dianne O’Leary for helpful comments and suggestions.

http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/master_equation.m
http://www.bnl.gov/chemistry/bio/HallGregory.asp
http://www.chem.umd.edu/christopherjarzynski
http://chemistry.jhu.edu/Silverstone/biography.html
http://www.cs.umd.edu/~oleary/
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FIG. 3. Location of the three Gershgorin disks for matrix (32). The centers of the disks, indicated

by the small open circles, correspond to the three diagonal elements of (32). The three filled circles

indicate the eigenvalues of the sample K matrix given in (32).
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