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I. INTRODUCTION

In these lectures, I will present an Introduction to some key concepts and ideas in the

quantum description of molecular collisions. Working through these topics, and the associ-

ated problems, will give you the background to embark on a research career in theoretical

chemistry

II. ONE-DIMENSIONAL SCATTERING BY A BARRIER

A. Rectangular Barrier

Consider one-dimensional scattering by a rectangular barrier, illustrated here
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FIG. 1. A one-dimensional rectangular barrier of height V0 and width a.

Since the potential is constant (and equal to zero) in region I, the wavefunction, which

is a solution to the one-dimensional, time-independent Schrodinger equation

Hψ = [KEop + V (x)] =

[

− h̄2

2m

d2

dx2
+ V (x)

]

ψ = Eψ

can be written as

ψI = eikx +Re−ikx (1)

where the wavevector is defined as k = (2mE/h̄2)1/2. This corresponds to an incoming

wave propagating to the right and a reflected wave, with amplitude R. In region III the

wavefunction can be written as

ψIII = Seikx (2)

which corresponds to a scattered wave with amplitude S. Obviously |S|2 + |R|2 = 1, since

flux has to be conserved. In region II, the form of the wavefunction depends on whether

the energy is greater than or less than V0. In the former case, which corresponds to the

classically allowed situation, we have

ψII = Aeik
′x +Be−ik′x (3)

where k′ = [2m(E − V0)/h̄
2]1/2. When E < V0, the form of the wavefunction is

ψII = Aeκx +Be−κx (4)
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where κ = [2m(V0 −E)/h̄2]1/2

The wavefunction and its first derivative must be continuous as the boundaries between

regions I and II and between regions II and III. These two continuity conditions will allow

us to eliminate A and B, and obtain an expression of S and R. To do so we proceed as

follows:

At x = 0, the boundary between regions I and II, the value of ψI and its first derivative

can be expressed in matrix notation as







ψI(x = 0)

ψ′
I(x = 0)





 =







1 1

ik −ik













1

R





 = ML







1

R





 (5)

Similarly, at x = 0 the the value of ψII and its first derivative can be expressed in matrix

notation as






ψII(x = 0)

ψ′
II(x = 0)





 =







1 1

ik′ −ik′













A

B





 = MR







A

B





 (6)

Note that when E < V0, the matrix MR is

MR =







1 1

κ −κ





 (7)

Setting Eqs. (5) and (6) equal (which is the continuity condition on the function and its first

derivative) we obtain






A

B





 = M−1
R ML







1

R





 (8)

Now, at x = a, the wavefunction in region II and its first derivative can be expressed as







ψII(x = a)

ψ′
II(x = a)





 =







eik
′a e−ik′a

ik′eik
′a −ik′e−ik′a













A

B





 = M̃







A

B





 (9)

When E < V0, the matrix M̃ is

M̃ =







eκa e−κa

κeκa −κe−κa





 (10)
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Also, at x = a the wavefunction in region III and its first derivative can be written as







ψIII(x = a)

ψ′
III(x = a)





 = S







eika

ikeika





 (11)

Now, inserting Eq. (8) into Eq. (9) and equating Eqs. (9) and (10) (the continuity con-

dition at x = a) gives







Seika

ikSeika





 = M̃M−1
R ML







1

R





 = M







1

R





 (12)

Equation (12) is equivalent to solving the following set of linear equations for S and R,

namely






−eika M12

−ikeika M22













S

R





 =







−M11

−M21





 (13)

Problem 1

Write a Matlab script to determine the coefficients S and R as a function of the energy.

Use atomic units (h̄ = 1), with m = 1822 (the mass of the H atom in atomic units), V0 =

8× 10−4, and a = 3a0. Matrices can be defined easily in Matlab, for example, once you

have given a value to k′, mtilde = [ exp(i*k*a) exp(-i*k*a) ; i*k*exp(i*k*a)

-i*k*exp(-i*k*a)];

The inverse of matrix mat is given by inv(mat). The solution of a set of linear equations

Mc = r

where M is a square matrix and c and r are column vectors, is given by

c = M \ r.

Hint: To help you debug your Matlab script, Tab. I lists some values of |S|2 and |R|2

for several energies
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TABLE I. Square of the scattering and reflection coefficients for scattering by a rectangular barrier.

V0 = 8 × 10−4, a = 3, m = 1822.

E |R|2 |S|2
4.10e–4 9.9688e–1 3.1240e–3

8.10e–4 8.5295e–1 1.4705e–1

1.21e–3 7.5028e–2 9.2497e–1

1.61e–3 9.1131e–2 9.0887e–1

2.01e–3 1.7417e–5 9.9998e–1

Problem 2

A plot of the correct values should show that |R|2 goes nearly to zero at the energies

3.0094e-4, 1.2038e-3, and 2.7085e-3. In other words, at these energies there is no reflec-

tion. The collision of the incoming wave proceeds as if there is no barrier at all. Why is

this?

Problem 3

Finally, for a large mass (m=50*1822), at very low energy (e=1×10−5 hartree), the

square of the scattering amplitude |S|2 becomes larger than one. This is physically

impossible. Why does this result occur?

B. General Potential: Time-independent treatment

Suppose we have an arbitrary potential V (x) which goes to zero as x→ ±∞. At x = −∞,

we designate the two linearly independent solution of the Schrodinger equation as

lim
x→−∞

ψ(+)(x) = eikx (14)

and

lim
x→−∞

ψ(−)(x) = e−ikx (15)
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To obtain ψ(±) at all values of x, we can use the Numerov method.[1] We define an equi-

spaced grid with points x0, x1, x2, ..., xn with spacing h. The values of ψ(±) at the grid points

are given by the 3-term recursion relation.

(

1 +
h2

12
k2n+1

)

ψ
(±)
n+1 =

(

2− 10h2

12
k2n

)

ψ(±)
n −

(

1 +
h2

12
k2n−1

)

ψ
(±)
n−1 (16)

where

k2n = k2n(xn) = 2m [E − V (xn)] /h̄
2

Procedurally, one starts with values of ψ(±) at x1 and x2 and then uses Eq. (16) to obtain

ψ(±)(x = x3) and so on, until one has propagated the solution to x = xn. Because the poten-

tial is real (presumably) the Hamiltonian is invariant with respect to complex conjugation,

so

ψ(−1)(x) = ψ(−1)(x)∗ (17)

Thus we need only propagate one of the linearly independent solutions.

At large x, where the potential has again gone to zero,

lim
x→∞

ψ(+)(x) = Aeikx +Be−ikx (18)

and, because of Eq. (17),

lim
x→∞

ψ(−)(x) = B∗eikx + A∗e−ikx (19)

We can obtain the coefficients A and B by fitting ψ(+)(xn−1) and ψ
(+)(xn), namely







exp(ikxn−1) exp(−ikxn−1)

exp(ikxn) exp(−ikxn)













A

B





 =







ψ(+)(xn−1)

ψ(+)(xn)





 (20)

At this point we wish to impose the scattering boundary conditions [Eqs. (1) and (2)]. In

particular, at large x we want the wavefunction to correspond to purely outgoing boundary

conditions, for x→ −∞ we want the wavefunction to behave as limx→−∞ ψ(x) = ψ(+)(x) +

Rψ(−)(x). The large x condition can be imposed by multiplying ψ−1(x) by a constant C so
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that

lim
x→∞

[

ψ(+)(x) + Cψ(−)(x)
]

= Seikx

From Eqs. (18) and (19) we see that this can be achieved if

C = −B/A∗

so that

lim
x→∞

[

ψ(+)(x) + Cψ(−)(x)
]

=
(

A− BB∗

A∗

)

eikx

Thus,

S = A− |B2|
A∗

Similarly, we can use Eqs. (14) and (15) to show that

lim
x→−∞

[

ψ(+)(x) + Cψ(−)(x)
]

= eikx + Ce−ikx = eikx − B

A∗ e
−ikx

Thus, the reflection amplitude is

R = − B

A∗ .

Problem 4

Plot the dependence on x of the Eckhart barrier (which is a model for chemical reaction

dynamics), namely

V (x) = V0 sech(ax)
2

with V0 = 3× 10−4, a = 3a0 and where

sech(ax) =
1

cosh(ax)
=

2

eax + e−ax
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Problem 5

Modify your Matlab script from subsection A to obtain the scattering and reflection

amplitude for scattering by an Eckhart barrier with m = 1822, V0=8e-4, and a = 3.

Plot the resulting values of |S|2 and |R|2 and compare these with the rectangular barrier

of subsection A. Hint: to check that your script is working, you could propagate to all

x the wavefunctions which have at r → −∞ the asymptotic for given in Eqs. (14) and

(15). These two solutions should be complex conjugates of each other. To make sure

you have the code working properly, Tab. II gives the answers at two energies.

TABLE II. Square of the scattering and reflection coefficients for scattering by an Eckart barrier.

V0 = 8 × 10−4, a = 1, m = 1822.

E R S |R|2 |S|2
1.70e–4 –2.9080e–1 + 9.5425e–1 i –6.6528e–2 – 2.0274e–2 i 9.9516e–1 4.8370e–3

1.17e–3 –2.4765e–1 + 2.6432e–2 i –1.0242e–1 – 9.6306e–1 i 6.2030e–2 9.3797e–1

III. ELASTIC SCATTERING IN THREE DIMENSIONS: CLASSICAL

TREATMENT

A. Separation of center-of-mass motion

See the handout I am distributing, taken from the book by McDaniel.[2]

B. Scattering in the center-of-mass frame

Now that we have separated out the motion of the center-of-mass, we need consider only

the scattering of a particle of mass µ by a potential V (r). More details on this classical

treatment can be found in a number of places.[3]

Since the potential depends only on the distance, the angular momentum l is conserved,

namely

l = µr2θ̇ = const (21)
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where the superscript “dot” indicates differentiation with respect to time. (Note that this

equation is the statement of Kepler’s law – equal angles are swept out in equal time – since

dθ/dt is constant). Also, since, in general,

~l = ~r × ~p = ~r ×m~v = mvr sin(θ) = mvb ,

where b is the impact parameter. This is illustrated in Fig. 12. Since ~v lies along the z axis,

we see from Fig. 12 that l is perpendicular to the scattering plane with magnitude mvb.

Z

v

b

l = r x p

r θ

FIG. 2. Scattering of an effective particle of mass µ. Initially, the system is described by the impact

parameter b and the velocity v. The angular momentum ~l is perpendicular to the scattering plane

and here points, for this choice of ~v and b, into the plane.

Now, the total energy is the sum of the kinetic and potential energy

E =
1

2
µṙ2 +

1

2
µr2θ̇2 + V (r) =

1

2
µṙ2 +

l2

2µr2
+ V (r) (22)

Asymptotically, at large r, where the potential vanishes, the energy is purely kinetic, so that

the asymptotic velocity is given by

lim
r→±∞

ṙ ≡ v =

(

2E

µ

)1/2

so that
l2

2µ
=

(µvb)2

2µ
= Eb2 (23)

This allows us to rewrite Eq. (22) as

E =
1

2
µṙ2 + E

b2

r2
+ V (r) (24)
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We can solve this equation for ṙ, obtaining

ṙ = ±
{

2E

µ

[

1− b2

r2
− V (r)

E

]}1/2

(25)

Before the collision, at large separation, V (r) is zero so that ṙ = −v = −(2E/µ)1/2. The

particles are approaching so that r is decreasing, thus ṙ is negative. The velocity decreases

until the particles reach their distance of closest approach. At this point ṙ = 0, The value

of r where this occurs defines the turning point, rmin. Mathematically, this is the value of r

for which
[

1− b2

r2
− V (r)

E

]

= 0

For head-on collisions (zero impact parameter) the turning point occurs where V (r) = E, at

which point all the energy is potential energy. As b increases, the turning point will increase.

Problem 6

Consider the interaction between two argon atoms, which can be well described by a

Morse potential

V (r) = De {exp [−2β(r − re)]− 2 exp [−β(r − re)]}

with, in atomic units re = 7.1053, β = 0.89305, and De = 4.456× 10−4.

Write a Matlab function script to determine the value of V (r) for an arbitrary r. Call

this script, say, vmorse(r). Then, write a function script to determine the value of

[

1− b2

r2
− V (r)

E

]

.

Call this function, say, term(r), which will be a function only of r. The values of b and E

must also be available to the function script. This can be done by making the variables

b and E “global” (see the Matlab help). This is done by inserting the statement

global E b

in both your calling script (or the command window) and in the function script.
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Once both vmorse(r) and term(r) are debugged, then you can determine the turning

point by using the Matlab command

rmin=fzero(′term′,xx)

Here xx is an initial numerical guess for the turning point (a good starting point is

xx = 5). Assume that E = 0.006 and use, in an initial check b=0. Check that everything

is working by then calculating the value of

[

1− b2

r2
− V (r)

E

]

at the turning point, namely

rmin=fzero(′term′,xx); term(rmin)

You’ll sometimes find (depending on E and b) that fzero will give you a turning

point for which the term in square brackets is negative, so that you’re slightly inside

the true turning point. To correct for this, add a small number to the turning point, in

other words, define the turning point as

rmin=fzero(′term′,xx)+1.e-12

Now, plot the turning point as a function of impact parameter for E = 0.006.

After the particle has reached the turning point then r will increase (out to infinity) so

that ṙ is positive.

Now we can use the chain rule to write

dθ

dr
=
dθ

dt

dt

dr
=
θ̇

ṙ

so that

dθ =
θ̇

ṙ
dr =

We can now use Eqs. (21) and (23) to write

dθ =

(

2E

µ

)1/2
b

r2ṙ
dr

If we now introduce Eq. (25) we obtain
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dθ = ± b

r2

[

1− b2

r2
− V (r)

E

]−1/2

dr (26)

This can be integrated to give

θ = θ0 ± b
∫ rmin

∞
r−2

[

1− b2

r2
− V (r)

E

]−1/2

dr (27)

If the initial direction of motion defines the z axis, then, asymptotically the particle starts at

−∞ so that θ0 = π (see Fig. 12) The angle defined by ~r · ẑ decreases as the collision occurs.

For a head-on collision, where b=0, the deflection angle is +π. Although the integrand is a

positive number, the integral itself, taken from a large value of r to a small value, will be

negative. Thus, we need to take the positive sign. After the collision the angle still decreases

as the particle moves from the classical turning point out to +∞. The amount the angle

of deflection changes after reaching to turning point is identical to the amount the angle of

deflection changes before reaching the turning point. Thus, finally, after the collision, the

angle of deflection is given by

θ = π + 2b
∫ rmin

∞
r−2

[

1− b2

r2
− V (r)

E

]−1/2

dr (28)

Reversing the order of integration to be the normal positive sense where the lower limit of

integration is less than the upper limit, we have

θ = π − 2b
∫ ∞

rmin

r−2

[

1− b2

r2
− V (r)

E

]−1/2

dr (29)

Problem 7

For the simple case of hard sphere scattering, the potential is defined by

V (r) = 0, r > σ , and V (r) = +∞, r ≤ σ

In this case the turning point is rmin = σ for b ≤ σ. Note that the deflection angle does
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not depend on E.

For b > σ there is no scattering. The incident particle moves in a straight line so that

after the collision θ = 0.

The range of integration in Eq. (29) is r = σ to r = ∞ . Show that if you let b = xσ,

where x ≤ 1 and r = ρσ, then the expression for θhs(b) is

θhs(b) = π − 2x
∫ ∞

1

dρ

ρ(ρ2 − x2)1/2

Then use the Wolfram online integrator [4] to obtain a simple closed-form expression

for the hard-sphere deflection angle as a function of x = b/σ.

Then, plot θ(b) for the hard sphere. To check yourself, what should be the value for

b = 0 and for b = σ?

Problem 8

For the scattering of two Ar atoms, write a Matlab script to determine the deflection

angle as a function of b. To do so, first write a function script integrand which evaluates

(similarly to your function script term)

r−2

[

1− b2

r2
− V (r)

E

]−1/2

Again, the function should be just of the variable r, with the values of b and E transferred

by a global statement.

Then, evaluate the integral using Matlab’s numerical quadrature function

quad(′integrand′,rmin,3000), where rmin is the turning point (determined by the pro-

cedure you previously used) and the lower limit of integration is set to a large negative

number (perhaps 3000 is too large, you should experiment).

Finally, plot θ(b) for the collision of two Ar atoms at E = 0.006. Compare this to the

hard-sphere deflection angle. You can assume the the hard-sphere radius σ is equal to

the value for which V (r) = E when E = 0.006.
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Although Matlab runs very fast, the procedure outlined above is quite inefficient.

Even after V (r) goes to zero, the integral in Eq. (29) is slow to converge.[5] A more

efficient procedure would be to rewrite this equation as

θ = π − 2b





∫ R

rmin

r−2

[

1− b2

r2
− V (r)

E

]−1/2

dr +
∫ ∞

R
r−2

[

1− b2

r2

]−1/2

dr



 (30)

where R is a value large enough that V (R) ∼= 0 (I think R = 20 will be sufficient in the

case of Ar–Ar collisions). The equation for θ(b) can be rewritten as

θ = π − 2b





∫ R

rmin

r−2

[

1− b2

r2
− V (r)

E

]−1/2

dr +
∫ ∞

R

dr

r [r2 − b2]1/2



 (31)

The 2nd integral can be evaluated analytically (you have already done so for the hard-

sphere example). See if you can implement this addition to come up with a more efficient

determination of θ(b).
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FIG. 3. Deflection function for Ar–Ar scattering, E = 0.002.

Figure 3 shows the dependence on b for the Ar–Ar deflection function at E = 0.002.

For head-on scattering (b = 0) the deflection is 180o. As the impact parameter decreases,
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so does the deflection angle. Eventually, the deflection is zero. The point at which this

occurs is called the hard-sphere impact parameter. At larger values of b, the scattering is

dominated by the attractive part of the potential, so that the particle is pulled in by the

potential and eventually scatters out to the other side of the z axis. This corresponds to a

negative deflection angle. This negative (attractive) scattering reaches a maximum, at an

angle called the rainbow angle (the name comes because of an analogy with the scattering

of light by rain droplets). At larger impact parameter the deflection angles goes gradually

to zero. Eventually, at very large b, the particle moves on by in a straight line, not sensing

the potential at all.

C. Classical differential cross section

Still in the center-of-mass frame, consider a beam of particles with mass µ incident from

r = −∞. Any particle coming in at impact parameter b will be scattered out at a polar

angle θ(b). Because the potential depends only on r, the scattering will be cylindrically

symmetric. Thus, any particle which approaches the target through a circular ring of radius

b will be scattered out through a spherical annulus with polar angle θ (this is the ring on

the surface of a sphere with polar angle θ and all values of the azimuthal angle φ). This is

shown in the next figure

θ

dθ

b

db

FIG. 4. Scattering of an incident beam of particles by a center of force (taken from fig. 3.1 of H.

Goldstein, Classical Mechanics).

We shall designate by I the total number of particles per unit time approaching the

target. The flux of particles (number per unit time per unit area) approaching through

the cylindrical ring of radius b is Ji = I/(2πbdb). The flux of particles then emerging

through the spherical annulus corresponding to polar angle θ (designated Θ in Fig. 4) is
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Js = I/[2π sin(θ)dθ]. Note that Js has units of number per unit time per unit solid angle.

The ratio of the scattered flux per unit solid angle to the incoming flux per unit area is

called the differential cross section

σ(θ) =
Js
Ji

=
bdb

sin(θ)dθ
=

∣

∣

∣

∣

∣

b

sin(θ)dθ/db

∣

∣

∣

∣

∣

, (32)

which has units of area (hence a cross section). We introduce the absolute value sign, since

the derivative can be both positive or negative. The differential cross section is sometimes

called dσ(θ), dσ/dθ, or dσ/dΩ.

In the laboratory, it is impossible (or very difficult) to specify the location of the particle

around the circle of radius b in Fig. 4, so that all possible impact parameters around this

circle are sampled. Consequently, it is impossible to measure the sign of the deflection angle,

in other words, impossible to distinguish particles which are scattered through angle +θ from

those that are scattered through angle −θ. An experiment measures the scattering at angle

θ arising from both the repulsive branch of the potential, scattering at a positive deflection

and the attractive branch of the potential scattering at a negative deflection. Thus, for

any angle θ less than the rainbow angle, there will be three contributions to the differential

cross section: one from the repulsive scattering at positive deflection angle and two from

attractive scattering with negative deflection angle. This is shown in Fig. 5
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FIG. 5. Three different impact parameters will contribute to scattering at 20o.
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For angles greater than the rainbow angle, only the repulsive branch will contribute.

Since the derivative of the deflection function appears in the denominator of the expression

for the differential cross section [Eq. (32)], the largest differential cross sections will occur

for angles at which θ(b) is nearly flat: namely at small deflection angles (forward scattering)

and in the region of the rainbow. Large differential cross sections imply that incoming

flux associated with many impact parameters will all appear at a single (or small range of)

scattering angles.

Figure 6 shows the classical differential cross section (multiplied by sin(θ)) for Ar–Ar

scattering at an energy of 0.002 Hartree. As we will see in the next section, the quantum

treatment will smooth out the classical singularities at θ = 0 and θ = θR. This will give rise

to quantum interference (just like in the classic two-slit experiment [6]).
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Classical Ar−Ar scattering E = 0.002 Hartree

FIG. 6. Classical differential cross section, Ar–Ar scattering, E = 0.002.

Problem 9

Write a Matlab script to determine the classical differential cross section for the scattering

of two Ar atoms at E = 0.006. You have previously written a script to determine θ(b),

which you can use to obtain θ at a grid of values of b. Now, determine the derivative

dθ/db using the Matlab function gradient, in other words

dth=gradient(th,db);
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where db is the spacing of your impact parameter grid. Then determine the rainbow

angle

[thr nr]=min(dth);thr=abs(thr);

Here, nr is the point in your array where the rainbow angle occurs. Next define a regular

grid in angle, for example

dang=thr/30;angl=[1:dang:thr];angg=[thr:dang:pi];

Here, angl and angg (angle-lesser and angle-greater) are angular grids for angles less

than and greater than the rainbow angle. Now, determine the range of the three branches

of the deflection function, by executing

n=find(th>0);n=max(n);

Thus, th(1:n) corresponds to the positive branch of the deflection function, th(n+1:nr)

corresponds to the negative branch inside the rainbow angle and th(nr+1:nmax) cor-

responds to the negative branch outside the rainbow angle. Interpolate the differential

cross section from each of these branches onto the regular grid in angle

dcs1=abs(interp1(th(1:n),1./(sin(th(1:n)).*dth(1:n),angl,’cubic’));

dcs2=abs(interp1(th(1:n),1./(sin(th(1:n)).*dth(1:n),angg,’cubic’));

dcs3=abs(interp1(th(n+1:nr),1./(sin(th(n+1:nr)).*dth(n+1:nr),angl,’cubic’));

dcs4=abs(interp1(th(nr+1:nmax),1./(sin(th(nr+1:nmax)).*dth(nr+1:nmax),angl,’cubic’));

Then, add up dcs1, dcs3, and dcs4 to obtain the differential cross section for θ ≤ θR.

The differential cross section for θ > θR is given just by dcs2.

When you plot your result, make sure you multiply by sin θ. This will reduce the size

of the singularities at θ = 0 and θ = π. The value of the dcs in the forward direction

(θ = 0) will still be very large, and dominate everything else on the plot. You can

compensate for this by reducing the range of the y-axis on the plot using the command

plot(x,y,′ylim′,[0 xx]) where xx is the maximum value of y that you wish to display.
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IV. ELASTIC SCATTERING IN THREE DIMENSIONS: QUANTUM

TREATMENT

A. Separation of radial and angular motion

In three dimensions the relative motion of two spherical particles subject to a poten-

tial which depends only on the magnitude of the distance between them can be reduced

to the motion of the center of mass and the motion of an effective particle of mass µ =

mamb/(ma +mb) (where µ is called the “reduced mass”) in the field of the potential V (r).

The corresponding Schrodinger equation is (outside of the potential, this is exactly the same

as the equation for the motion of the electron in the H atom and the rotational motion of a

diatomic molecule)
[

− h̄2

2µ
∇2 + V (r)

]

ψ(r) = Eψ(r) (33)

Because V (r) depends only on the magnitude of the distance between the two particles,

we can expand the wavefunction as

ψ(r) =
∑

lm

Ylm(θ, φ)gl(r) =
∑

lm

Ylm(θ, φ)Rl(r)/r (34)

where the radial function Rl(r) satisfies the equation (we will drop the subscript l except

when necessary)
(

− h̄2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
+ V (r)

)

R(r) = ER(r) (35)

Here, also, Yl0 is a spherical harmonic, which is related to the regular Legendre polynomial

Pl(cos θ) by

Yl0(θ, φ) =

(

2l + 1

4π

)1/2

Pl(cos θ) (36)

At large r, both the potential V (r) and the centrifugal barrier go to zero, so that the

radial function is the solution to the equation

d2R(r)/dr2 = −k2R(r)

and, thus, can be expressed either as linear combination of sin(kr) and cos(kr), or a linear

combination of exp(ikr) and exp(−ikr). In most cases the potential goes to zero much faster
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than r2, so that (as in the case of the classical treatment of elastic scattering), it is useful

to consider the behavior of this equation when V (r) is zero, but not the centrifugal barrier.

You can show that in this case we have

lim
r→∞

Eq. (35) =

[

x2
d2

dx2
− l(l + 1) + x2

]

R(x) = 0 (37)

where x = kr.

The solutions to this equation are related to the well-known spherical Bessel functions of

the first and second kind: jl(x) and yl(x),[7] which themselves are solutions to the Hemlholz

equation in spherical coordinates, namely

x2
d2f

dx2
+ 2x

df

dx
+
[

x2 − l(l + 1)
]

fl(x) = 0

where fl(x) is either jl(x) or yl(x).

Problem 10

Show that the Ricatti-Bessel functions

ĵl(x) = xjl(x)

and

ŷl(x) = xyl(x)

Satisfy Eq. (37).

The spherical Bessel functions are related to the cylindrical Bessel functions Jn(x) and

Yn(x) through the relation

jl(x) =
[

π

2x

]1/2

Jl+ 1

2

(x) (38)

and, for the linearly independent Bessel function of the second kind

yl(x) =
[

π

2x

]1/2

Yl+ 1

2

(x) (39)
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B. Numerical determination of the scattering wavefunction

As r goes to zero, the potential becomes greater than the energy, so that the solution to

the radial Schrodinger equation is either exponentially increasing or exponentially decreasing

as r → 0. We have to take the latter, since the wavefunction has to remain finite.

To obtain R(r) everywhere, we start at small r, with an approximation to the correct

exponentially decreasing function. If we assume that V (r) is constant and large at r = r0,

then we can approximate

R(r0) = 1× 10−10

dR

dr

∣

∣

∣

∣

∣

r=r0

= 1× 10−10κ0 (40)

where κ0 =
{

2µ [V (r0)− E] /h̄2
}1/2

If the spacing of our grid is h, then Eq. (40) allows us

to write

R(r1) = R(r0) +
dR

dr

∣

∣

∣

∣

∣

r=r0

(r − r0) = (1 + κ0h)× 1× 10−10

Here we implicitly assume that R(r) behaves linearly in the first sector. Once we know the

values of R0 and R1 we can use the Numerov method [Eq. (16)] to obtain R(r) at all larger

values of R.

Problem 11

Write a Matlab script to determine R(r) for the collision of two Ar atoms at E = 0.0005.

You can use the Numerov method to propagate the solution out to large r (probably

r = 20 will be largely sufficient). The mass of Ar is 39.948 amu (the collision reduced

mass is µ = m/2).

At large r, the solution can be written as a linear combination of the two Ricatti-Bessel

functions ŷl(kr) and ĵl(kr), namely

lim
r→∞

R(r) =
1

k

[

Alĵl(kr) +Blŷl(kr)
]

(41)
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Here Al and Bl are two arbitrary constants. Since both A and B are arbitrary, we have

multiplied them both here by 1/k, for convenience later.

If rN−1 and rN are your two last grid points, then you can obtain the coefficients Al

and Bl by solving the set of linear equations (use Matlab’s backslash function)







ĵl(krN) ŷl(krN)

ĵl(krN−1) ŷl(krN−1)













Al

Bl





 =







kR(rN )

kR(rN−1





 (42)

You can obtain the values of the Ricatti-Bessel functions at rN and rN−1 using Matlab’s

besselj and bessely commands for the cylindrical Bessel functions. [Remember to

convert these to spherical Bessel functions using Eqs. (38) and (39)].

To check that everything is working, you should find that the values of the expansion

coefficients Al and Bl are converged with respect to decreasing r0, increasing rN , and

increasing the size of the grid. Since the overall normalization of the wavefunction is

arbitrary, we can avoid working with large numbers by renormalizing so that

A =
A√

A2 +B2
and B =

B√
A2 +B2

To test your Matlab code, Tab. III the values of A and B for Ar–Ar scattering at

E=0.0005:

TABLE III. Asymptotic expansion coefficients, Ar–Ar scattering, E=0.0005 hartree.a

l ψ(RN ) Ab Bb Sc

0 1.2708×10−7 0.94857 –0.31662 0.79950–0.60067i

30 –5.3398×10−7 –0.93076 0.36563 0.73263–0.68062i

80 –2.0026×1011 0.99442 –0.10545 0.97776–0.20972i

a µ = 19.974, r0 = 5.5, rN = 25, h = 0.02.
b renormalized.
c see Eq. (49)

When the centrifugal barrier becomes very large, so that

h̄l(l + 1)

2µr2
>> V (r)
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then the Schrodinger equation for R(r) [Eq. (35)] becomes identical to the equation for

the Ricatti-Bessel functions [Eq. (37)]. The solution which behaves correctly at the origin

(limr→0R(r) = 0) is ĵl(kr). Thus, at large l, the expansion coefficients are liml→∞Al = 1

and liml→∞Bl = 0.

Now, from our numerical solution of the radial Schrodinger equation [Eq. (41)] we see

that the large R behavior of the wavefunction is

lim
r→∞

ψ(r) =
∑

lm

Ylm(θ, φ)
R(r)

r
=
∑

l

1

kr

[

Alĵl(krN) +Blŷl(krN)
]

Yl0(θ, φ)

=
∑

l

[Aljl(krN) +Blyl(krN)] Yl0(θ, φ)

=
∑

l

[

2l + 1

4π

]1/2

[Aljl(krN) +Blyl(krN)]Pl(cos θ) (43)

Here, we have limited the sum just to the m = 0 projection states, because the scattering

has cylindrical symmetry. By equating Eqs. (68) and (43), we can obtain the coefficients in

the expansion of the scattering amplitude in terms of the coefficients Al and Bl, which we

have obtained numerically.

To do so, we need first examine the asymptotic properties of the Ricatti-Bessel functions.

Since

lim
x→∞

Jν(x) =
[

2

πx

]1/2

cos
(

x− 1

2
νπ − 1

4
π
)

so that

lim
x→∞

Jl+ 1

2

(x) =
[

2

πx

]1/2

cos
[

x− (l + 1)
π

2

]

we find

lim
x→∞

jl(x) =
1

x
cos

[

x− (l + 1)
π

2

]

(44)

and, similarly (you should show this)

lim
x→∞

yl(x) =
1

x
sin

[

x− (l + 1)
π

2

]

(45)

Rather than use the real spherical Bessel functions, we can use the complex spherical
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Hankel functions, namely

h
(1,2)
l (x) = jl(x)± iyl(x) (46)

where the first (second) spherical Hankel functions corresponds to the plus (minus) sign.

Problem 12

Use Eq. (46) to show that the asymptotic (r → ∞) behavior of these two spherical

Hankel functions is given by

lim
r→∞

h
(1,2)
l (kr) =

1

kr
exp {±i [kr − (l + 1)π/2]} =

(∓i)l+1

kr
e±ikr (47)

Problem 13

The behavior of the Bessel functions at very large r is given by Eqs. (44) and (45). Show

that

lim
r→∞

R(r)

r
=

1

2kr

[

(Al − iBl)ĥ
(1)
l + (Al + iBl)ĥ

(2)
l

]

=
1

2

[

(Al − iBl)h
(1)
l + (Al + iBl)h

(2)
l

]

(48)

You can re-arrange this equation to write

lim
r→∞

R(r)

r
= Cl

[

Slh
(1)
l (kr) + h

(2)
l (kr)

]

(49)

where Cl and Sl are complex constants.
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Problem 14

Determine an expression which relates the constant Sl to the constants Al and Bl which

you obtain from your Numerov propagation.

See if you can derive any limits on the magnitude of the S coefficient Now, from the

answer to Problem 13 we see that

lim
r→∞

R(r)

r
=

1

kr
C
[

(−i)l+1eikrSl + il+1e−ikr
]

(50)

Insertion of this equation into Eq. (43) leads to

lim
r→∞

ψ(r) =
∑

lm

Ylm(θ, φ) lim
r→∞

R(r)

r
=
∑

l

[

2l + 1

4π

]1/2

Pl(cos θ) lim
r→∞

R(r)

r

=
∑

l

[

2l + 1

4π

]1/2
1

kr
C
[

(−i)l+1eikrSl + il+1e−ikr
]

Pl(cos θ)

=
∑

l

[

2l + 1

4π

]1/2
i

kr
C
[

−(−i)leikrSl + ile−ikr
]

Pl(cos θ) (51)

C. Phase shift

From Eqs. (41), (44), and (45), we see that at large R we can write

lim
r→∞

R(r) ∼ Al cos
[

kr − π

2
(l + 1)

]

+Bl sin
[

kr − π

2
(l + 1)

]

∼ Al sin (kr − lπ/2) +Bl cos (kr − lπ/2) (52)

Equivalently, we can write

lim
r→∞

R(r) ∼ D sin (kr − lπ/2 + δl) (53)

where δl is the “phase shift”.
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Problem 15

Show that

δl = tan−1
(

B

A

)

(54)

Then, show that

Sl = exp(2iδl) (55)
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FIG. 7. Phase shift (modulo 2π) for Ar–Ar scattering, E = 0.0005 hartree.

In pratice, determination of the phase shift from Eq. (54) gives the value of δl only to

within modulo 2π, as seen in Fig. (7).

One can unroll this by hand, starting at large l, where the phase shift is zero, and

progressively adding or subtracting 2π so that the resulting phase shift is smooth, as shown

in Fig. (8).

For V (r) = 0, the solution to the Schrodinger equation is R(r) = Âjl(kr), because the

other linearly independent solution ŷl(kr) blows up at the origin. Thus, for V (r) = 0,

A = 1 and B = 0, so that δl = 0. At large l, the attractive well in the potential pulls

the wavefunction in (as compared to the V (r) = 0 case, so that there are more oscillations
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FIG. 8. Phase shift for Ar–Ar scattering, E = 0.0005 hartree.

than would be seen in the absence of a potential. This is illustrated by Fig. (9). The

corresponding phase shift is negative.
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=−10.5912

FIG. 9. Scattering wavefunction R(r) (blue) for Ar–Ar scattering, E = 0.0005 hartree, l = 50. The

green curve is the corresponding Ricatti-Hankel function, which is the wavefunction for V (r) = 0.

The phase shift is ∼ −1.5 × 2π which indicates, as seen here, that there are approximately 1.5

additional full oscillations in the blue curve.

As l decreases, the centrifugal barrier is less important, relative to V (r), so that the re-

pulsive part of the potential pushes the wavefunction out, so that there are fewer oscillations

as compared to the V (r) = 0 case. This is seen in Fig. (10). The corresponding phase shift
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is positive.
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FIG. 10. Scattering wavefunction R(r) (blue) for Ar–Ar scattering, E = 0.0005 hartree, l = 20. The

green curve is the corresponding Ricatti-Hankel function, which is the wavefunction for V (r) = 0.

The phase shift is ∼ 0.8 × 2π which indicates that there is approximately one fewer full oscillation

in the MidnightBlue curve.

In a semiclassical description, the phase shift is 2π times the difference between the

number of wavelengths in the path followed if the potential V (r) is zero compared to the

number of wavelengths in the actual path, namely

δl = 2π lim
r→∞

[

∫

V=0path

dr

λr
−
∫

actual path

dr

λr

]

(56)

where λr is the local deBroglie wavelength

λr =
h

p(r)
=

h

µv(r)

with, from Eq. (25)

µv(r) = µṙ =

{

2Eµ

[

1− b2

r2
− V (r)

E

]}1/2

= µv

[

1− b2

r2
− V (r)

E

]1/2

(57)

with µv being the initial relative momentum
[

µv = (2µE)1/2
]

. The lower range of integration

is the classical turning point rmin (in the case where the potential is zero, the turning point
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is equal to the impact parameter) so that

δl =
µv

h̄





∫ R

b

[

1− b2

r2

]1/2

dr −
∫ R

rmin

[

1− b2

r2
− V (r)

E

]1/2

dr



 (58)

Here, R is the value of the distance for which the potential has effectively vanished (see

Sec. II.B). The first integral can be evaluated analytically to give [8]

∫ R

b

[

1− b2

r2

]1/2

dr =
(

R2 − b2
)1/2 − b cos−1(b/R)

In order to evaluate numerically both integrals, we need to know the correspondence be-

tween the classical impact parameter and the quantum mechanical angular momentum. We

remember from Eq. (23) that l2cl = (µvb)2. We also know that square of the angular mo-

mentum in quantum mechanics is
〈

l̂2
〉

= l(l+1)h̄2. Thus, in Eq. (58) we need to replace b2

by

b2 =
h̄2l(l + 1)

(µv)2

Thus, Eq. (58) becomes (in atomic units, where h̄ = 1)

δl = µv





∫ R

b

[

1− l(l + 1)

µvr2

]1/2

dr −
∫ R

rmin

[

1− l(l + 1)

(µvr)2
− V (r)

E

]1/2

dr





= µv





(

R2 − b2
)1/2 − b cos−1

(

b

R

)

−
∫ R

rmin

[

1− l(l + 1)

(µvr)2
− V (r)

E

]1/2

dr





= µv





(

R2 − b2
)1/2 − b cos−1

(

b

R

)

−
∫ R

rmin

[

1− b2

r2
− V (r)

E

]1/2

dr



 (59)

where, here b = [l(l + 1)]1/2/µv.

Problem 16

Write a Matlab script to determine the semiclassical phase shift, defined in the preceding

equation. Use the work you did in Problem 6 to determine the turning point, then use

the Matlab function quad to evaluate the integral.

For Ar–Ar collisions at E = 0.0005 hartree, the semiclassical phase shift, as a function of
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l, differs only minutely from the quantum phase shift shown in Fig. (8). The following table

contains some numerical comparisons.

TABLE IV. Comparison of quantum and semi-classical phase shifts (radians) for Ar–Ar scattering,

E=0.0005 hartree.

l δQ [Eq. (54)] δSC [Eq. (59)]

0 31.09 31.87

20 5.23 5.23

40 –9.06 –9.07

60 –4.89 –5.01

Typically, semi-classical approximations become less accurate when the mass is reduced.

If we replace the mass of Ar with that of He, and simulate He–He collisions at E = 0.0005

hartree with the Ar–Ar potential, the reduced mass drops form ∼ 20 to ∼ 2, a factor of 10.

However, as shown by Fig. 11 the agreement is still excellent, with a few slight exceptions,

notably at l = 0.
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FIG. 11. Phase shift for He–He scattering with the Ar–Ar potential, E = 0.0005 hartree. The Mid-

nightBlue curve is the quantum predictions from Eq. (54) and the green circles are the semiclassical

predictions from Eq. (59). Note that the minimum occurs at l ∼= 15, while the minimum in Fig. (8)

occurs at l ∼= 50. This is because for a lighter reduced mass the value of l which corresponds to a

given impact parameter is smaller.
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D. Scattering boundary conditions

The Schrodinger equation is solved subject to the boundary condition

lim
r→∞

ψ(r) = eikz +
f(θ)eikr

kr
(60)

The first term corresponds to an incoming plane wave and the second term, to the scattered

wave. [9]

The flux density can be evaluated as

~J = − ih̄

2µ
(ψ∗∇ψ − ψ∇ψ∗) (61)

The incoming flux is evaluated by using ψi = eikz which yields

Jiẑ =
h̄k

µ
ẑ

This is the incoming flux per unit area (dA = dxdy). The outgoing flux through a sphere of

radius r can be evaluated by using ψo = f(θ)eikr/r and knowing that the radial component

of the gradient in spherical polar coordinates is

r̂
d

dr

This yields

Jor̂ =

(

h̄

kµ
|f(θ)|2/r2

)

r̂ (62)

The total outgoing flux through the surface of a sphere of radius r is

∫

Jor
2dΩ

Since the scattering is independent of the azimuthal angle (by symmetry) we see that the

outgoing flux per unit solid angle is

Jo(Ω) =
h̄

kµ
|f(θ)|2
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Since the differential cross section is defined (see Sec. III) as the ratio of the outgoing flux

per unit solid angle to the incoming flux per unit area, we see that

dσ

dΩ
≡ Jo/Ji =

|f(θ)|2
k2

(63)

The quantity f(θ) is called the “scattering amplitude.”

E. Determination of f(θ)

To obtain the scattering amplitude, we first use the well-known expansion of a plane wave

in spherical waves (due originally to Lord Rayleigh) namely

eikz =
∑

l

il [4π(2l + 1)]1/2 jl(kr)Yl0(θ, φ) (64)

where we see the spherical Bessel function one more time. From Eq. (36), we see that

Eq. (64) can be rewritten in terms of Legendre polynomials as

eikz =
∑

l

il(2l + 1)jl(kr)Pl(cos θ) (65)

Similarly, we can expand the scattering amplitude in a Legendre series

f(θ) =
∑

l

1

2
(2l + 1)flPl(cos θ) = i

∑

l

1

2i
(2l + 1)flPl(cos θ) (66)

Because of the orthogonality properties of the Legendre polynomials

∫ π

0
Pl(cos θ)Pm(cos θ) sin θdθ =

2δlm
2l + 1

(67)

we see that

fl =
∫ π

0
Pl(cos θ)f(θ) sin θdθ

Consequently, the asymptotic behavior of the wavefunction [Eq. (60)] can be re-expressed

as



34

lim
r→∞

ψ(r) =
∑

l

(2l + 1)

[

1

2
fl
eikr

kr
+ iljl(kr)

]

Pl(cos θ) (68)

From Eq. (46) we see that

jl(kr) =
1

2

[

h
(1)
l (kr) + h

(2)
l (kr)

]

With this, along with Eq. (47), we can rewrite Eq. (68) as

lim
r→∞

ψ(r) =
1

2

i

kr

∑

l

(2l + 1)

[

eikr
(

fl
i
− 1

)

+ (−1)le−ikr

]

Pl(cos θ) (69)

Problem 17

Check all the algebra and derivations. Now, the asymptotic expression for the wave-

function you have obtained by numerical solution [Eq. (51)] must equal this expression.

Knowing this, for each l equate the coefficients of exp(ikr) and exp(−ikr) in Eqs. (51)

and (69) to derive an equation for the terms fl in the expansion of the scattering am-

plitude in terms of the coefficient Sl. By requiring that the coefficients of exp(−ikr) be
identical in Eqs. (51) and (69), you can show that

Cl = il [(2l + 1)π]1/2 (70)

and

fl = i(1− Sl) (71)

Requiring the coefficient of exp(−ikr) to be identical, yields Eq. (71).

Problem 18

Modify your Matlab script to obtain as a function of l the scattering amplitude from this

equation at all values of l. As l increases, Sl goes to +1, so that liml→∞ fl = 0. Then,
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using Eq. (63) determine the differential cross section for Ar–Ar scattering at E=0.0005.

Do a similar calculation for He–He scattering (µ = 2.0013 amu) described by the Ar–Ar

potential. In both cases, compare your results with the classical differential cross section

plotted in Fig. 6.

Table V lists some Ar–Ar scattering amplitudes

TABLE V. Comparison of quantum scattering amplitudes and differential cross section for Ar–Ar

scattering, E=0.0005 hartree, lmax=100.

θ f(θ) dσ/dΩ a

2 1.0522e+3 + 9.5366e+1 i 30655

22 5.5310e+1 + 6.1524e+1 i 187.98

42 –4.0047e+1 + 3.1983e+1 i 72.14

62 –1.4737e+1 + 2.8595e+1 i 28.42

a Eq. (63); Units of a2
0
/Sr.

Here is a plot of the differential cross sections for Ar–Ar and for He–He (with the Ar–Ar

potential).
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FIG. 12. Differential scattering of two Ar atoms, E = 0.0005 hartree.
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FIG. 13. Differential scattering of two He atoms, E = 0.0005 hartree.

F. Integral Cross Section

The integral over all solid angle of the differential cross section defines the “integral”

cross section, namely

σ =
∫

dσ

dΩ
sin θdθdφ = 2π

∫

dσ

dΩ
sin θdθ =

2π

k2

∫

|f(θ)|2 sin θdθ =

Here, because the scattering is azimuthally symmetric, we have integrated trivially over φ.

Problem 19

Show that if you substitute the expansion over l of f(θ) [Eq. (66)] and use the orthogo-

nality of the Legendre polynomials [Eq. (67)], you obtain

σ =
π

k2
∑

l

(2l + 1)|fl|2 =
π

k2
∑

l

(2l + 1)|1− Sl|2 (72)

Using Eqs. (55), show that this is equivalent to

σ =
2π

k2
∑

l

(2l + 1) sin2 δl (73)

Then, use this equation, as well as Eqs. (55), (66), and the relationship Pl(θ = 0) = 1

to prove the “optical theorem” which states that the integral cross section is proportional
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to the imaginary part of the amplitude for scattering in the forward (θ = 0) direction.

[10]

σ =
4π

k2
Im[f(θ = 0)] (74)

V. INELASTIC SCATTERING

A. Generalities

Suppose you scatter an atom with internal states ψi, which satisfy the Schrodinger equa-

tion

Hint(q)χn(q) = εnχn(q) (75)

where q designates the internal degrees of freedom and εn is the internal energy of state n.

The eigenfunctions χn(q) are, of course, orthonormal, namely

∫

χ∗
n(q)χm(q)dq = δmn

The corresponding time-independent Schrodinger equation for the system of the atom plus

a structureless collision partnerthen becomes

[

− h̄2

2µ
∇2 +H(r, q)

]

ψ(r, q) = Eψ(r,q) (76)

where H(r, q) is some Hamiltonian which depends on both the separation of the atom with

its collision partner and the internal degrees of freedom of the atom. We shall assume for

simplicity here that H depends only the the magnitude of r, not its orientation. In the limit

of large separation,

lim
r→∞

H(r, q) = Hint(q) (77)

Similarly, the wavefunction depends on both the internal degree(s) of freedom and the
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separation coordinate r. Extending Eq. (??), we will expand the wavefunction as

ψ(r, q) =
∑

n

∑

lm

Ylm(θ, φ)gln(r)χn(q) =
∑

n

∑

lm

Ylm(θ, φ)
Cln(r)

r
χn(q) (78)

Now, substitute this expansion into Eq. (76), then premultiply by one of the internal state

functions, χm(q), say, and integrate over q. You can show that the Schrodinger equation is

then transformed into a set of coupled ordinary differential equations

[

− h̄2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
+ Vmm(r)− E

]

Cm(r) = −
∑

n 6=m

Vmn(r)Cn(r) , (79)

where

Vmn(r) =
∫

χ∗
m(q)H(r, q)χn(q)dq (80)

Note that for convenience in the notation later in the section we are using C(r) rather than

R(r) to designate the radial wavefunctions divided by r.

Formally, we can rewrite these so-called “close-coupled” equations as

[

I
d2

dr2
+W(r)

]

C(r) = 0 (81)

where

W(r) = 2µ [EI−V(r)] (82)

In this equation, and henceforth, we use atomic units, where h̄ = 1.

The solution to Eq. (81) is a matrix, with each column representing a linearly independent

solution involving coefficients Cnm for all n internal states. For the case where there are only

two internal states,

C(r) =







C11(r) C12(r)

C21(r) C22(r)





 (83)

Equation (77) implies that asymptotically the W(r) matrix is diagonal with elements

lim
r→∞

Wnn(r) = k2n ≡ 2µ

[

E − εn −
l(l + 1)

R2

]

(84)

The appropriate scattering boundary conditions in this two-channel case is
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lim
r→∞

C(r) =







k
−1/2
1 ĥ

(2)
l1
(k1r) 0

0 k
−1/2
2 ĥ

(2)
l2
(k2r)





−






k
−1/2
1 ĥ

(1)
l1
(k1r) 0

0 k
−1/2
2 ĥ

(1)
l2
(k2r)





 S (85)

Here the S coefficient is now an S matrix. In matrix notation, Eq. (85) is

lim
r→∞

C(r) = ĥ(2)(r)− ĥ(1)(r)S (86)

In the case where the angular momentum l is zero, Eq. (85) goes to

lim
r→∞

C(r) = i







k
−1/2
1 exp(−ik1r) 0

0 k
−1/2
2 exp(−ik2r)







+ i







k
−1/2
1 exp(ik1r) 0

0 k
−1/2
2 exp(ik2r)





 S (87)

B. The renormalized Numerov method in the asymptotic basis

Given the potential, how do we obtain the S matrix? We set up a regular grid of N + 1

points, with h the width of each sector. At the first point, which is presumed to lie well

within the classically forbidden region, we will assume that the wavefunction vanishes, in

other words

C(r0) ≡ C0 =







0 0

0 0





 (88)

To propagate the solution we can use the Numerov algorithm [Eq. (16)], namely (for a

one-dimensional problem)

(1− TM+1)CM+1 = (2 + 10TM)CM − (1− TM−1)CM−1 (89)
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where

TM = −h
2

12
W (rM) = −h

2

12
2µ [E − V (r = rM)] (90)

Because the kinetic energy is diagonal, this same three-term recursion relation can be easily

generalized to multidimensional problems. Note the difference between Eq. (16) and (89). In

the former case the T terms are defined asE−V , whereas here, to be consistent with Ref. [11],

we define the T terms as V − E. For a multi-state (sometimes called “multichannel”)

problem, Eqs. (89) and (90) are written in matrix notation, namely

(I−TM+1)CM+1 = (2I+ 10TM)CM − (I−TM−1)CM−1 (91)

and

TM = −h
2

12
2µ [EI−V(r = rM)] (92)

In order to avoid the numerical instabilities caused by exponentially growing solutions in

the classically forbidden region, we shall use the “renormalized” Numerov algorithm, due to

Johnson. [12] To derive the propagation algorithm, we introduce two transformations. First,

we define

FM = (I−TM)CM (93)

so that the basic propagation relation [Eq. (89)] becomes

FM+1 −UMFM + FM−1 = 0 (94)

where

UM = (2I+ 10TM) (I−TM)−1 (95)

Note that we will use subscript “M” to designate the M th sector or the M th grid point RM ,

while we use subscripts n and m as as row and column indices.

Now, we define the “ratio matrix”

RM+1 = FM+1F
−1
M = (I−TM+1)CM+1 [(I−TM)CM ]−1 (96)

It follows that FM+1 = RM+1FM and R−1
M = FM−1F

−1
M . Solving for R rather than C

will eliminate instabilities in the original Numerov method due to exponentially growing
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solutions in the classically forbidden region.

This allows you to rewrite the equation for the ratio matrix [Eq. (96)] as

RM+1 = UM −R−1
M (97)

This is a two-term recursion relation for the ratio matrix.

Propagation of the ratio matrix can be accomplished provided we specify the inverse of

R at the first grid point, namely R−1
0 . To do so we assume that the solution at the first grid

point vanishes [Eq. (88)]. At the second grid point, the solution will be small but not zero.

Consequently, F0 = 0 and F1 6= 0. This implies that R−1
0 = 0. Thus,

R1 = U0 (98)

and

R2 = U1 −R−1
1 = U1 −U−1

0 (99)

Subsequently, the two-term recursion relation [Eq. (97)] can be used to determine the ratio

matrix all the way until the last grid point.

Since W is symmetric, it follows that both T and U are symmetric. Since R−1
0 = 0,

which is symmetric, the R matrix continues to be symmetric throughout the propagation.

We can also show that [see Eq. (95)],

UM = (2I+ 10TM) (I−TM)−1 = 12(I−TM)−1 − 10I (100)

This along with Eq. (97) define the propagation from grid point M to grid point M + 1.

Knowing the ratio matrix at grid point M (RM), as well as UM from Eq. (100), we can

compute RM+1. The overall propagation relation is then

RM+1 = −R−1
M + 12 (I−TM)−1 − 10I

= −R−1
M + 12

(

I+
h2

12
WM

)−1

− 10I (101)

This involves two matrix inversions per sector.
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Problem 20

Show that if we assume F0 = 0 and F1 6= 0, then R−1
0 = 0.

C. Determination of the log-derivative matrix

Extraction of the S matrix is most easily done if one first determines the log-derivative

matrix at the end of the last sector. This is defined as a multi-channel generalization of the

logarithmic derivative of the wavefunction, namely

YN = CN
′C−1

N

For this we will need the derivative of the solution. We know, by application of a standard

Taylor expansion,

ψ(r + h) = ψ(r) + h
dψ

dr

∣

∣

∣

∣

∣

r

+
h2

2

d2ψ

dr2

∣

∣

∣

∣

∣

r

+
h3

6

d3ψ

dr3

∣

∣

∣

∣

∣

r

and, similarly

ψ(r − h) = ψ(r)− h
dψ

dr

∣

∣

∣

∣

∣

r

+
h2

2

d2ψ

dr2

∣

∣

∣

∣

∣

r

− h3

6

d3ψ

dr3

∣

∣

∣

∣

∣

r

By subtracting these two equations you can obtain

dψ

dr

∣

∣

∣

∣

∣

r=rN

≈ ψN+1 − ψN−1

2h
− h2

6

d3ψ

dr3

∣

∣

∣

∣

∣

r=rN

+O


h5
d5ψ

dr5

∣

∣

∣

∣

∣

r=rN



 (102)

Now
d3ψ

dr3

∣

∣

∣

∣

∣

r=rN

≈ ψ′′
N+1 − ψ′′

N−1

2h
=

−WN+1ψN+1 +WN−1ψN−1

2h

Here we have used Eq. (81) to simplify the right hand side of the last equation.

We can neglect the terms of O(h5) to obtain

dψ

dr

∣

∣

∣

∣

∣

r=rN

≈ 1

2h
(ψN+1 − ψN ) +

h

12
(WN+1ψN+1 −WN−1ψN−1)
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=
1

h

[(

1

2
+
h2

12
WN+1

)

ψN+1 −
(

1

2
+
h2

12
WN−1

)

ψN−1

]

=
1

h

[(

1

2
− TN+1

)

ψN+1 −
(

1

2
− TN−1

)

ψN−1

]

(103)

We can generalize this to our matrix representation of the solution in the case of coupled

equations obtaining

CN
′ =

1

h

[(

1

2
I−TN+1

)

CN+1 −
(

1

2
I−TN−1

)

CN−1

]

(104)

The derivation of the formula for the derivative in Eq. (103) was first given by Blatt [13]

and follows closely the procedure used in deriving the original Numerov method. [14]

At the end of the last sector we obtain RN+1 from R−1
N . We know that

RN+1 = FN+1F
−1
N = (I−TN+1)CN+1 [(I−TN)CN ]

−1

and

RN = FNF
−1
N−1 = (I−TN )CN [(I−TN−1)CN−1]

−1

From the first of these two equations we obtain

CN+1 = (I−TN+1)
−1

RN+1 (I−TN)CN

and from the second, we obtain

CN−1 = (I−TN−1)
−1

R−1
N (I−TN )CN

If we substitute these two equations into Eq. (104), and then post multiply by C−1
N , we

obtain the following expression for the log-derivative matrix at r = rN

YN
∼= 1

h

[(

1

2
I−TN+1

)

(I−TN+1)
−1

RN+1 −
(

1

2
I−TN−1

)

(I−TN−1)
−1

R−1
N

]

(I−TN)

(105)
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D. Operational outline of the renormalized Numerov method

Figure 14 shows the division of the r axis into N sectors, starting at r = r0. Sector M

is delimited by r = rM−1 to the left and r = rM to the right. The renormalized Numerov

sector 1 2

r0 r2r1 rN–2 rNrN-1

N–1 N

rN+1

FIG. 14. Schematic partition of the r-axis into a series of sectors. The last sector ends at r = rN .

To determine the log-derivative matrix at r = rN , we need to propagate one more step, out to

r = rN + h.

method proceeds by determining at the left-hand side of sector M , in order, V(rM−1),

W(rM−1), T(rM−1) and U(rM−1), and then, with this information, transforming the ratio

matrix at the left of sector M (RM−1) into the ratio matrix at the right of this same sector

(RM). In this way the ratio matrix at r = rM−1 is propagated to r = rM .

At the end of the numerical propagation we have to carry out one more propagation step,

out to r = rN+1 (see Fig. 14). Then we use the ratio matrix at the right end-point of the

last sector (RN), as well as the T matrices at r = rN−1, r = rN , and r = rN+1 and the

ratio matrix at the supplemental point r = rN+1 to determine, by means of Eq. (105) the

log-derivative matrix at r = rN .

The operational outline of the renormalized Numerov propagation is as follows:

a. At the first integration point (r = r0) determine W0 and then T0 = −h2

12
W0.

b. Determine U0 from Eq. (100) for M = 0.

c. Determine the ratio matrix R1 from Eq. (98). Also calculate the T matrix at the right-

hand side of the first sector (T1).

Then repeat for r = r1 → rN (sectors 2, 3, . . . , N) replacing steps a− c with

b′. Determine UM−1 from Eq. (100)

c′. Determine the new ratio matrix RM by use of Eq. (97), specifically RM = UM−1−R−1
M−1.

Also calculate the T matrix at the right-hand side of the current sector (TM).

d. At the end of each sector, update the T and R matrices, namely

TM−1 → TM−2 TM → TM−1 RM → RM−1
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e. Upon finishing the N th sector, we carry out one more repetition of steps b′ and c′, out to

rN+1 = rN + h.

e. When propagation is completed, we have calculated TN−1, TN , TN+1 as well as RN ,

and, finally, RN+1. We use these matrices to determine, from Eq. (105), the log-derivative

matrix at r = rN (YN).

E. Determination of the S matrix

We know from Eq. (86) that

lim
r→∞

C(r) = ĥ(2)(r)− ĥ(1)(r)S (106)

Differentiation gives

lim
r→∞

C(r)′ = ĥ(2)(r)′ − ĥ(1)(r)′S (107)

where ĥ(1,2)(r)′ are diagonal matrices, with elements given by the derivatives of the diagonal

elements in Eq. (85). From the preceding two equations, we see that

lim
r→∞

Y(r) = Y(rN) = YN =
[

ĥ(2)(rN)
′ − ĥ(1)(rN )

′S
] [

ĥ(2)(rN)− ĥ(1)(rN)S
]−1

(108)

This equation can be rearranged to yield

[

ĥ(1)(rN)
′ −Y(rN)ĥ

(1)(rN )
]

S =
[

ĥ(2)(rN)
′ −Y(rN)ĥ

(2)(rN)
]

(109)

Since we have previously determined Y(rN), we can solve this set of complex linear equations

for the S matrix. Alternatively, the linear equations can be decomposed into real and

imaginary parts, which you can solve using real (rather than complex) arithmetic for the

real and imaginary parts of S.

If the angular momentum l is zero, then the elements of the diagonal ĥ(1,2)(r) matrices

are

ĥ(1,2)nn (r) = (∓i)k−1/2
n exp(±iknr) (110)

where the upper sign goes with the ĥ(1) matrix [see Eq. (87)].
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Problem 21

Demonstrate the expansion of the wavefunction of Eq. (78) reduces the Schrodinger

equation (76) to the set of coupled ordinary differential equations of Eq. (79).

Problem 22

Show that introduction of the ratio matrix [Eq. (96)] allows you to transform the matrix

Numerov equation (94) into the matrix equation for R, namely Eq. (97).

Problem 23

Demonstrate that Eq. (102) follows from subtraction of the two equations which precede

it.

Problem 24

Show how the overall propagation equation in the renormalized Numerov method (101)

follows from the equations which precede it.

Problem 25

Show how Eq. (109) follows from Eq. (108).

Problem 26
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Immediately after Eq. (109) we mention that you can obtain the real and imaginary

parts of S separately, by solution of two sets of linear equations each of which involve

only real quantities. Derive these equations.

F. Illustrative calculation: Asymptotic basis

Consider two coupled equations, which represent the coupling between the 2P1/2 and

2P3/2 states of the Cl atom, both with Ω = 1/2, induced by collisions with a spherical H2

molecule. The matrix of the potential is

V(r) =







2
3
VΣ + 1

3
VΠ − A

√
2
3
(VΠ − VΣ)

√
2
3
(VΠ − VΣ)

1
3
VΣ + 2

3
VΠ + 2A





 (111)

where the spin-orbit constant is A = 293.3 cm−1. The potentials VΠ and VΣ are fit by the

functional form

VΣ(Π)(r) = C1e
−λ1r + (C2 + C3r) e

−λ2r − C4

2
{tanh [1.2 (r − λ3)] + 1} r−6

The constants (energies in cm−1 and distances in a0) are given in Tab. VI.

TABLE VI. Constants defining two-state inelastic scattering modela

VΣ VΠ
λ1 0.813 0.677

λ2 1.2014 2.2061

λ3 5.5701 6.2093

C1 3.7457(+3) –7.7718(+3)

C2 6.7280(+5) –7.3837(+7)

C3 –1.2773(+5) 3.2149(+7)

C4 3.4733(+6) 2.9743(+6)

a Powers of ten in parentheses

Plot the dependence on r of the matrix elements in Eq. (111) and, with dashed lines on

the same plot, the dependence on r of the two eigenvalues which you obtain by diagonalizing

the 2× 2 matrix of Eq. (111).
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Let the reduced mass be 2.85 atomic mass units and the angular momentum l = 0. It

is most convenient to work in Hartree atomic units, in which h̄ = 1. (1 cm−1 = 219474.6

Hartree, and 1 amu = 1822.889 atomic units) Write a Matlab script or Fortan code to

calculate the inelastic transition probability, |S12|2, at energies of 600, 800, 1000, 1500, and
2000 cm−1. This is the probability that an atom in the upper (or lower) spin-orbit state will

be transferred by collision to the other spin-orbit state. To check that your code is working,

for E = 1000 cm−1, r0 = 3.5 a0, N = 200, rN = 22 a0, you should obtain

YN ≡ Y(r = rN) =







37.384 −0.72415

−0.72528 −3.9881







and

S =







0.11949− 0.99213i −0.0025682 + 0.037300i

−0.0025723 + 0.037358i −0.017617 + 0.99914i





 (112)

The S matrix should be symmetric (which is a consequence of time-reversibility). The

result shown above is not quite symmetric. This is a consequence of the error introduced by

discretization. Increasing the number of sectors results in convergence to a fully symmetric

matrix. This is shown by the results in the Tab. VII.

TABLE VII. Convergence of inelastic components of the S matrix for the model two-channel

inelastic scattering illustration.

N (S12 + S21) /2 (S12 − S21) /2

100 –0.03305+0.0033661i 3.2306×10−4–3.2903×10−5 i

200 –0.0025703+0.037329i 2.007×10−6–2.9151×10−5 i

300 –0.0000095+0.037501i 1.534×10−9–6.0816×10−6 i

500 0.00053111+0.037514i –1.146×10−8–8.0943×10−7 i

1000 0.00060658+0.037515i –8.273×10−10–5.1162×10−8 i

Another check is that the sum of the absolute value squared of any column of the S

matrix should add to unity (which is a consequence of conservation of probability).

Figure 15 on the next page shows the convergence of the inelastic transition probabilities

(the absolute value squared of the off-diagonal elements of the S matrix) as the number of

sectors is increased. For an energy of 1000 cm−1 and a reduced mass of 2.85 atomic mass

units the de Broglie wavelength is ≈ 0.91 ao. Typically, you need the sector size to be ≈1/10

http://en.wikipedia.org/wiki/Atomic_units
http://en.wikipedia.org/wiki/Matter_wave
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FIG. 15. Convergence of the inelastic transition probability for the model two-channel inelastic

scattering illustration.

the deBroglie wavelength for the numerical integration to be accurate. Here that translates

to a sector size of ≈ 0.09 ao, or ≈ 200 sectors to cover the range 3.5 ≤ r ≤ 22. We see from

Fig. 15 that even with ≈ 150 sectors the calculated inelastic probabilities have converged to

within 1 %.

G. Using the renormalized Numerov method in the locally adiabatic basis

An alternative solution scheme involves propagating in a locally adiabatic basis (see also

Ref. [14]). We refer the reader back to Fig. 14 on page 44. Let VM be the matrix of the

potential [Eq. (80)] at r = rM , namely VM ≡ V(rM) . Then, let XM be the matrix which

diagonalizes VM , namely

XT
M V(rM)XM = XT

M VM XM = ṽM (113)

where ṽM is the diagonal matrix of the eigenvalues. Since the matrix of the potential

is either symmetric (or Hermitian), the matrix X will define an orthogonal (or unitary)

transformation. We shall assume that V is a real, symmetric matrix. Hereafter, we use

the superscript tilde to designate quantities in the locally adiabatic basis. The columns of

the matrix XM are the linear combinations of the functions {χ(q)} in which the matrix of
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H(r, q) is diagonal at r = rM . We will designate these functions {φM(q)}, so that

{φM} = XT
M {χ}

Here, both {φM(q)} and {χ(q)} are column vectors.

The goal is to obtain the matrix C(r) which is a set of linearly-independent combinations

of the internal states {χ(q)} which solve Eq. (81). The renormalized Numerov method works

by propagating the ratio matrix which [as seen in Eq. (96)] is related to a product of the

solution matrix C at one point and the inverse of the solution matrix at the previous point.

Now, suppose we chose to propagate the solution in the locally adiabatic basis. In this ap-

proach we will seek, in each sector, the matrix C̃M(r) which is the set of linearly-independent

combinations of the locally adiabatic states {φM} which are solutions to the CC equations.

For simplicity, we shall suppress the variable q unless needed. In the preceding sections, we

considered solution of the close-coupled equations in the asymptotic basis {χ}.

Obviously, the C̃M(r) matrix is related to the CM(r) matrix by the transformation XM .

The application of the renormalized Numerov method in the locally-adiabatic basis will

require first working through the algebra associated with propagating the ratio matrix in

the locally-adiabatic basis. At first thought this seems like a more cumbersome way to solve

the equations, especially since matrix diagonalization is required at each additional grid

point. However, it will offer some advantages, particularly if one is interested in determining

cross sections for scattering at a large number of collision energies or if one has access to

computational hardware and vector libraries which permit a high degree of parallelization.

Propagation in the locally adiabatic basis will make use of the locally-adiabatic equivalent

of the FM matrix of Eq. (93), which we will designate by the superscript tilde, namely

F̃M =
(

I− T̃M

)

C̃M (114)

where

T̃M = XT
MTMXM (115)

Now, since C̃M = XT
MCM and since I = XT

M I XM , we can rearrange Eq. (114) as

F̃M =
(

I− T̃M

)

C̃M = XT
M (I−TM)XMC̃M = XT

M (I−TM)CM (116)
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Comparing the right-hand side with Eq. (93), we conclude that

F̃M = XT
MFM (117)

This demonstrates that the F matrix transforms as the basis functions. This is reasonable,

since [Eq. (114)] reveals that F̃ is just a linear combination of the solutions C̃.

The Numerov propagation relation in the asymptotic basis is given by Eq. (94), which

we repeat here:

FM+1 −UMFM + FM−1 = 0 (118)

Using Eq. (117) to transform the three F matrices into the locally adiabatic basis, we find

XM+1F̃M+1 = UMXM F̃M −XM−1F̃M−1 (119)

We then postmultiply by F̃−1
M and premultiply by XT

M to get

XT
MXM+1F̃M+1F̃

−1
M = XT

MUMXM −XT
MXM−1F̃M−1F̃

−1
M (120)

Now, the overlap between the locally-adiabatic functions in sector M and those in sector

M + 1 is

OM,M+1 = XT
MXM+1 (121)

so that the preceding equation can be written as

OM,M+1F̃M+1F̃
−1
M = XT

MUMXM −OT
M−1,M F̃M−1F̃

−1
M (122)

If we define the ratio matrix in the locally-adiabatic basis as

R̃M ≡ OM−1,M F̃M F̃−1
M−1 (123)

then Eq. (122) becomes

R̃M+1 = XT
MUMXM −OT

M−1,MR̃−1
M OM−1,M
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= ŨM −OT
M−1,MR̃−1

M OM−1,M (124)

where ŨM is the transform of the UM matrix into the locally adiabatic basis. Now, we

remember that

UM = (2I+ 10TM) (I−TM)−1

Premultiplying by XT
M , postmultiplying by XM , and inserting a factor of I = XMXT

M

immediately after the term (2I+ 10TM) gives

XT
MUMXM = XT

M (2I+ 10TM)XMXT
M (I−TM)−1

XM

= XT
M (2I+ 10TM)XM

[

XT
M (I−TM)XM

]−1
(125)

We recall that the T matrix is defined by Eq. (92). Since the V matrix is diagonalized

by the X matrix, it follows that the T matrix is also diagonalized, with elements

(

T̃M

)

nn
= −h

2

12
2µ [E − ṽn(r = rM)] (126)

Consequently, we conclude from Eq. (125) that the ŨM matrix is also diagonal, namely

XT
MUMXM = ũM

with elements

(ũM)nn =
[

2 + 10
(

t̃M
)

nn

]/ [

1−
(

t̃M
)

nn

]

(127)

Consequently, Eq. (124) becomes (see Ref. [11] for an alternate explanation of this entire

derivation)

R̃M+1 = ũM −OT
M−1,MR̃−1

M OM−1,M (128)

Suppose we are interested in running scattering calculations at multiple energies. The

transformation matrices XM and, thus, OM−1,M are independent of energy. Thus the

ÕM−1,M matrices need only be computed once. Once the O matrices are computed and

stored, the propagation of Eq. (128) involves just a linear equation solution followed by a

matrix multiply to propagate the ratio matrix from one sector to the next. This is particu-

larly efficient if one wants solutions at a lot of energies. The detailed algorithm is as follows:
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1. Solve a set of simultaneous linear equations for the (temporary) matrix B, namely

R̃MBM = OM−1,M

2. Obtain R̃M+1 from B as

R̃M+1 = ũM −OT
M−1,MBM

Typically one would use the Lapack routines DGESV for step 1 and DGEMM for step 2. In the

solution of the matrix equations AB = C, the routine DGESV overwrites both A and C.

Thus, it will be necessary to store OM−1,M , obtain B, then used the stored matrix OM−1,M

to obtain OT
M−1,MB.

Propagation in the locally-adiabatic basis produces the ratio matrices in the locally-

adiabatic basis. It is easy to show using Eqs. (117) and (121) that

R̃M ≡ OM−1,M F̃M F̃−1
M−1

= XT
M−1FMF−1

M−1XM−1 = XT
M−1RMXM−1 (129)

Reversing the transformation gives

RM = XM−1R̃MXT
M−1 (130)

so that the ratio matrix in the asymptotic basis is the inverse transform of the ratio matrix

in the locally-adiabatic basis.

H. Determination of the log-derivative matrix in the asymptotic basis

We know from Sec. VE that the S matrix can be determined from a knowledge of the log-

derivative matrix at r = rN . In the asymptotic basis, Eq. (105) gives the relation between

YN and the T and R matrices at points N − 1, N , and N + 1. Making use of Eqs. (115)

and (129), we can rewrite Eq. (105) as

YN
∼= 1

h

[

XN+1

(

1

2
I− T̃N+1

)

(

I− T̃N+1

)−1
OT

N,N+1R̃N+1

http://www.netlib.org/lapack/


54

−XN−1

(

1

2
I− T̃N−1

)

(

I− T̃N−1

)−1
R̃−1

N ON−1,N

]

(

I− T̃N

)

XT
N (131)

Problem 27

Carry out the algebra leading from Eqs. (117) and (121) to Eq. (129). Then, make use

of Eqs. (115) and (129) to transform Eq. (105) into Eq. (131).

I. Initialization and propagation algorithm: locally-adiabatic basis

How is the renormalized Numerov propagator in the locally-adiabatic basis initialized? In

sector 1 2

r0 r2r1

FIG. 16. Initial sectors

the initial sector we diagonalize theV(r) matrix at r = r0. The diagonalizing transformation

is X0. We then initiate propagation in the locally adiabatic basis using Eq. (98), namely

R̃1 = ũ0 (132)

where ũ0 is given by [see Eq. (127)]

(ũ0)n =
[

2 + 10
(

t̃0
)

n

]/ [

1−
(

t̃0
)

n

]

(133)

At the right hand side of the first sector (at r = r1), we obtain the next diagonalizing

transform X1 and then the first overlap matrix [Eq. (121)]

O0,1 = XT
0X1
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The locally-adiabatic matrix at r = r1 is then obtained from Eq. (128) as

R̃2 = ũ1 −OT
0,1R̃

−1
1 O0,1

The operational outline of the renormalized Numerov propagation in the locally adiabatic

basis is as follows (let M be the sector index, ranging from M = 1 to M = N .

a. At the first integration point (r = r0) determine V0. Diagonalize V0 to obtain X0. Call

this XMm1.

b. Determine T̃0 and ũ0 from Eqs. (126) and (127) for M = 0. Call these ttMm1 and uMm1.

c. Determine the ratio matrix R̃1 from Eq. (132). Call this RtM.

d. Determine V at the right-hand-side of the sector (r = rM). Diagonalize this matrix

to obtain XM . Call this XM. From this, and the matrix XM−1, which you have already

calculated (see step a above), obtain the overlap matrix OM−1,M = XT
M−1XM . Call this

OMm1M.

e. From V(rM) and XM Determine T̃ and ũ at the right-hand-side of the sector. Call these

ttM and uM.

f . Except for the last sector, update the T̃, ũ, X, R̃, and Õ matrices, namely

ttMm1 → ttMm2 ttMm → ttMm1 XMm1 → XMm2 XM → XMm1 RtM → RtMm1 uMm → uMm1 OMm1M → OMm2Mm1

Then repeat steps c− f for sectors 2, 3, . . . , N + 1, replacing step c with

c′. From ũM−1 and OM−2,M−1 (which you have already calculated as uMm1 and OMm2Mm1),

determine the ratio matrix R̃M from Eq. (128).

g. Upon finishing the N th sector, we carry out one more repetition out to rN+1 = rN + h,

without the update step f .

When propagation is completed, we have calculated T̃N−1, T̃N , T̃N+1, XN−1, XN , XN+1

as well as R̃N , and, finally, R̃N+1. We use these matrices to determine, from Eq. (131), the

log-derivative matrix at r = rN (YN). Determination of the S-matrix is done according to

Sec. VE, identical to when propagation is carried out in the asymptotic basis.
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J. Illustrative calculation

Carry out the sample two-state calculation of Sec. VF in the locally adiabatic treatment.

I would encourage you to write your own Matlab script, but, just in case you’re lazy, you can

get a copy of the script here. You should get exactly the same results as in the calculation

using the asymptotic basis. In fact, for the illustrative calculation done in Sec. VF you

should obtain

S =







0.11959− 0.99213i −0.0025682 + 0.037299i

−0.0025777 + 0.037358i −0.017805 + 0.99914i





 (134)

Which differs insignificantly from Eq. (112). Table VII, which compares the symmetry of

the calculated inelastic S-matrix elements as a function of the number of steps, becomes

replaced here by

TABLE VIII. Convergence of inelastic components of the S matrix for the model two-channel

inelastic scattering illustration. Propagation in the locally adiabatic basis.a

N (S12 + S21) /2 (S12 − S21) /2

100 –0.03305+0.0033566i 3.2306×10−4–3.2903×10−5 i

200 –0.0025703+0.037329i 2.007×10−6–2.9151×10−5 i

300 –0.00001311+0.037501i 1.534×10−9–6.0816×10−6 i

500 0.00052891+0.037514i –1.146×10−8–8.0943×10−7 i

1000 0.00060658+0.037515i –8.273×10−10–5.1162×10−8 i

a The differences with Tab. VII are given in red.

K. Enhanced Numerov propagator

The conventional Numerov propagator, in either the original or renormalized versions, is

based on Eq. (94). For a set of uncoupled equations, as we have in each locally-adiabatic sec-

tor, theUmatrix is diagonal with elements defined by Eq. (127). Thorlacius and Cooper [15]

suggest a slightly different propagator, in which all elements of the diagonal ũM matrix given

in Eq. (127) for which T̃nn < 0 are replaced by

(ũM )n = 2 cos
[

(

−12T̃nn
)1/2

]

.

http://www2.chem.umd.edu/groups/alexander/teaching/matlab_files/renormalized_numerov_adiab_final.m
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This modification is called the “enhanced Numerov algorithm”. Figure 17 compares the

inelastic transition probabilities and the relative fractional error in the inelastic transition

probability for the two-channel problem of Sec. VF, as computed by the Renormalized

Numerov method in the asymptotic basis and by the enhanced Numerov method in the

locally adiabatic basis. We see that although at low energy both methods, and, in particular,
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FIG. 17. Comparison of calculated transition probabilities (left panel) and relative fractional

error (right panel) for the two-state problem of Sec. V F. The blue and green curves correspond,

respectively, to using enhanced renormalized Numerov propagation in the locally-adiabatic basis

and conventional renormalized Numerov propagation in the asymptotic basis

the enhanced renormalized version fails miserably. However, for N ≃ 75, the enhanced

renormalized Numerov method is dramatically more accurate.

L. Advantages of the locally-adiabatic propagation

Solution of the close-coupled equations in the asymptotic basis requires two matrix inver-

sions per sector. The operational count for this is 8n3/3 where n is the number of coupled

equations. Solution of the close-coupled equations in the locally-adiabatic basis requires

solution of a full (n right-hand-sides) set of linear equations followed by a matrix multiply.

The operational count is 4n3/3 + n3 = 7n3/3, slightly less. However, to determine the

locally-adiabatic basis requires one matrix diagonalization per sector, as well as a matrix

multiply to determine the overlap matrix ON−1,N , roughly 11n3/3 operations

Thus, for solution of the close-coupled equations at a single collision energy, the asymptotically-

based method is to be preferred. However, if one is interested in solutions at m collision
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energies. The operational count will be 8mn3/3 for the asymptotically-based method. Since

the diagonalization is independent of the collision energy, since the potential matrix V(r)

is unchanged, this operation, and the determination of the overlap matrix, need be done

only once. Consequently, the operational count for the locally-adiabatic method will be

(7m+ 11)n3/3 operations. This will become competitive for m > 11.

Also, since matrix multiplication will benefit the most (or the easiest) from parallelization,

in a parallel environment the locally-adiabatic method, which involves one matrix multiply

and one solution of a set of linear equations, may be practically more efficient than the

asymptotically-based method, which involves two matrix inversions.

In addition, in the locally-adiabatic method one can exploit the Thorlacius-Cooper en-

hanced propagator to gain a sufficient degree of accuracy with fewer sectors.

VI. ROTATIONALLY INELASTIC SCATTERING

Here we will adapt the general discussion of inelastic scattering from the previous section

to the particular case of collisions of a rigid rotor with a closed-shell, spherical partner. The

states of the rigid-rotor target will the labelled with the space-frame quantum numbers j

and m with energy εj (independent of mj) and coordinate representation

|jmj〉 ≡ Yjmj
(r̂)

where r̂ is the orientation of the molecular axis. Asymptotically, the wave function for

the scattering system describes an incoming plane wave with the molecule in rotational

state |jmj〉 and a scattered wave including a contribution from all energetically accessible

rotational states, namely

lim
R→∞

Ψ(jmj)(~R, r̂) = eikjZ |jmj〉+
∑

j′mj′

1
√

kjkj′
fjmj→j′mj′

(R̂) |j′mj′〉
eikj′R

R
(135)

where the wave vectors are (in atomic units) kj = [2µ(E − εj)]
1/2. Here upper-case R

designates the atom-molecule separation coordinate, while ~r which designates the orientation

of the bond axis of the diatomic. Note that the elastic term (j′ = j and mj′ = mj) reduces

to Eq. (60) which we derived in the section on quantum elastic scattering
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Following the analysis of the scattering wave function in the Section on Elastic Scattering

(see ??), the ratio of the outgoing flux per unit solid angle in state |j′mj′〉 to the incoming

flux per unit area in |jmj〉 is |fjmj→j′mj′
|2/k2j . This quantity has the dimensions of area and

is the differential cross section associated with the transition jmj → j′mj′.

A. Partial Wave Decomposition

We can easily extend Eq. (68) to the inelastic case, (but here using upper-case R to

designate the atom-molecular separation coordinate) writing

lim
r→∞

Ψ(~R, r̂) =
∑

l

(2l + 1)





i

2

∑

j′mj′

f
(l)
jmj→j′mj′

eikj′R

kj′R
|j′mj′〉+ iljl(kR) |jmj〉



Pl(cos θ) (136)

where we have followed Eq. (66) in expanding the elastic and inelastic scattering amplitudes

in Legendre polynomials, namely

fjmj→j′mj′
(R̂) =

∑

l

1

2
(2l + 1)f

(l)
jmj→j′mj′

Pl(cos θ) = i
∑

l

1

2i
(2l + 1)f

(l)
jmj→j′mj′

Pl(cos θ) (137)

The scattering will be azimuthally symmetric, so that the results will depend only on the po-

lar angle θ. Note that we are using upper-case R to designate the atom-molecule separation

coordinate, as opposed to ~r which designates the bond axis of the diatomic.

VII. COLLINEAR REACTIVE SCATTERING

A. Bond, Jacobi, and mass-scaled Jacobi coordinates

Consider the collinear reaction A+BC→AB+C. Let xi (where i = a, b, c) designate the

position of each atom. The kinetic energy operator is

T̂ = − 1

2ma

d2

dx2a
− 1

2mb

d2

dx2b
− 1

2mc

d2

dx2c
(138)

Define three new coordinates (which we shall designate collectively q), namely the position

of the center-of-mass

R =
maxa +mbxb +mcxc

M
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where M = ma +mb +mc, as well as the two bond distances

u1 = xb − xa

and

u2 = xc − xb

Problem #21 Using the chain rule

d

dxa
=

d

du1

du1
dxa

+
d

du1

du1
dxb

+
d

dR

dR

dxa

(and, similarly, for dx/dxb and d/dxc) show that the second derivatives which enter into

Eq. (138) are given by
d2

dx2a
=

d2

du21
− 2ma

M

d2

du1dR
+
m2

a

M2

d2

dR2

d2

dx2b
=

d2

du21
− 2

d2

du1du2
+

d2

du22
− 2mb

M

d2

du1dR
− 2mb

M

d2

du2dR
+
m2

b

M2

d2

dR2

and
d2

dx2c
=

d2

du22
− 2mc

M

d2

du2dR
+
m2

c

M2

d2

dR2

Consequently, in terms of the variables u1, u2 and R the kinetic energy operator is

T̂ = −1

2

[

1

M

d2

dR2
+

1

µab

d2

du21
+

1

µbc

d2

du22
− 2

mb

d2

du1du2

]

where µab is the AB reduced mass

µab =
mamb

ma +mb

and similarly for µbc.

If we define the row vector
d

du
=

[

d

du1

d

du2

d

dR

]

Then we can rewrite the kinetic energy operator in matrix form

T̂q =
1

2

d

du
µ

−1
q

d

du

T

(139)
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where

µq =
1

M













ma(mb +mc) mamc 0

mamc mc(ma +mb) 0

0 0 M2













and

µ
−1
q =

1

M













µ−1
ab −1/mb 0

−1/mb µ−1
bc 0

0 0 1













Here µab and µbc are the usual AB and BC reduced masses, namely µab = mamb/(ma +mb)

and similarly for µbc. The motion of the center of mass is uncoupled from the two other

coordinates. For simplicity, we will drop R.

In classical mechanics, the kinetic energy is

T =
1

2

(

v2a + v2b + v2c
)

We now define the Jacobi coordinates suitable to the reactant (A+BC) arrangement. These

are the distance between A and the center-of-mass of the BC molecule, and

v1 = u1 +
mc

mb +mc
u2

and the BC bond distance

v2 = u2

The relation between the row vector of Cartesian coordinates q and the row vector of reactant

Jacobi coordinates v is

v = qTqv = q







1 0

mc

mb+mc
1







or q = vTvq where

Tvq = T−1
qv =







1 0

−mc

mb+mc
1






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The relation between the row vector of the gradients dq and dv is

[

d
dq1

d
dq2

]

=
[

d
dv1

d
dv2

]







dv1
dq1

dv1
dq2

dv2
dq1

dv2
dq2





 = dvTT
qv

Thus, in Jacobi coordinates, the matrix of the kinetic energy operator, analogous to

Eq. (139), is

T̂v =
1

2

d

dv
TT

qv µ
−1
q Tqv

d

dv

T

=
1

2

d

dv
µ−1
v

d

dv

T

(140)

where

µv =







µa,bc 0

0 µbc







Consequently, the matrix of the kinetic energy is diagonal in Jacobi coordinates. We shall

make one more simplification, by transforming to mass-scaled Jacobi coordinates,

S = λ1/2v1

and

s = λ−1/2v2

with

λ =

[

µa,bc

µbc

]1/2

Or

s = [S s] = [v1 v2]Tvs

where

Tvs =







λ1/2 0

0 λ−1/2







Following the development earlier in this section, leading from the Cartesian to the Jacobi



63

coordinates, we find

dv = dsTT
vs = ds







λ1/2 0

0 λ−1/2







so that, in the mass-scaled Jacobi coordinates the matrix of the kinetic energy operator is

T̂s
1

2

d

ds
TT

vs µ
−1
v Tvs

d

ds

T

=
1

2

d

ds
µ−1
s

d

ds

T

=
1

2µ

d

ds
I
d

ds

T

(141)

where I is the unit matrix and µ is the system reduced mass

µ =
[

mambmc

ma +mb +mc

]1/2

Thus, in mass-scaled Jacobi coordinates, the matrix of the kinetic energy operator is

independent of the choice of the arrangement used to define the Jacobi coordinates.

B. Relation between arrangement Jacobi coordinates

The relation between the mass-scaled Jacobi and the bond coordinates is

sa = qTqva TvaSa
= qTqsa

Here, we have added the subscript a, to designate the arrangement A–BC.

Problem 28

Show that

Tqsa =

(

µa,bc

µbc

)1/4






1 0

µbc/mb (µbc/µa,bc)
1/2







The relation for the arrangement AB–C is identical, except that the diatomic bond is

now q1. Thus

Tqsc =

(

µab,c

µab

)1/4






µab

mb

(

µab

µab,c

)1/2

1 0






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Now, consider the mass-scaled Jacobi coordinates in arrangements a and c. From Eq. (??)

you can show that

sc = sa T
−1
qsa Tqsc = saTa

where the transformation T is

Ta = [(ma +mb) (mb +mc)]
−1/2







[mamc]
1/2 [mbM ]1/2

[mbM ]1/2 − [mamc]
1/2





 (142)

Problem 29

Show that the transformation matrix T is orthogonal, namely T T T = I.

As is shown schematically in Fig. 18 the Jacobi coordinates corresponding to the product

(AB+C) arrangement {Rc, rc} corresponds to a rotation of the reactant (A+BC) arrange-

ment Jacobi coordinates through an angle Θ followed by a reflection in the Rc axis. This

combined transformation is







1 0

0 −1













cosΘ sinΘ

− sin Θ cosΘ





 =







cosΘ sinΘ

sinΘ − cosΘ





 (143)

Be comparison of this last equation with Eq. (142), we see that the rotation angle, called

the skew angle, is

Θ = tan−1

[

(

mbM

mamc

)1/2
]

The skew angle ranges from nearly 0, for a reaction involving exchange of a light atom

between two heavy atoms (Cl+HCl→ClH+Cl, for example), to 60o, for a reaction with

equal masses (H+H2, for example), to 90o, for a reaction involving exchange of a heavy

atom between two light atoms (H+ClH→HCl+H, for example).
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Ra

Rc

rc

ra A
B
+
C

Θ
A+BC

FIG. 18. Reactant (solid) and product (dashed) Jacobi coordinates for a typical reactive system.

The two sets of coordinates are related by a rotation through the angle Θ followed by a reflection

in the new Rc axis. (Figure taken from Ref. a).

a D. E. Manolopoulos, “Encylopedia of Computational Chemistry,” P. v. R. Schleyer, ed. (Wiley,

Chichester, 1998) pp. 2699–2708

VIII. FINITE ELEMENT SOLUTION OF THE SCHROEDINGER EQUATION

A. Generalities

In mass-scaled reactant-arrangement Jacobi coordinates the Schroedinger equation is

[

− 1

2µ
∇2

a + V (Sa, sa)− E

]

ψ(Sa, sa) = 0

If we premultiply by any arbitrary function (designated a test function in the FEM literature)

φ(Sa, sa)
∗, and integrate over a domain Ω in the variables Sa and sa, we obtain

∫

Ω
φ(Sa, sa)

∗
[

− 1

2µ
∇2

a + V (Sa, sa)−E

]

ψ(Sa, sa) dΩ = 0
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Using Green’s theorem (integration by parts) and making the further simplification that

φ(Sa, sa) is real, we can transform this to

∫

Ω
∇φ · ∇ψ dΩ−

∫

Γ
φ(~n · ∇ψ) dΓ + 2µ

∫

Ω
φ(V − E)ψ dΩ = 0 (144)

Here, dΩ = dSadsa and we have suppressed the coordinate dependence of the potential.

The domain Ω is subtended by the surface Γ; to which ~n is the outward normal. Figure 19

illustrates the boundary (delimited by green lines) for the reactive scattering system shown

in Fig. 18.

Ra

Rc

rc

ra A
B
+
C

A+BC

Γc

Γa

Γo

FIG. 19. Illustration of the boundary (drawn in green) of the domain Ω of solution of the

Schroedinger equation. The boundary is broken into threes sections: the outer boundary along

which the scattering wave function vanishes, and the reactant and product boundaries, along

which the wave function is described by the usual scattering boundary conditions; see subsection

VIII B.

The integrals which appear in Eq. (144) are functionals of two arbitrary functions of the

coordinates u(Sa, sa) and v(Sa, sa), namely

A(u, v) =
∫

Ω
∇u · ∇v dΩ

(In the FEM literature, this term is called the bilinear form), as well as a boundary integral
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.

B(u, v) =
∫

Γ
u(n · ∇v) dΓ

a potential matrix

C(u, v) =
∫

Ω
uV v dΩ

and an overlap matrix

D(u, v) =
∫

Ω
uv dΩ

With these definitions, then, the Schroedinger equation becomes

A(φ, ψ) + 2µC(φ, ψ)− 2µED(φ, ψ) = B(ψ, φ) (145)

We will now triangulate the domain (illustrated also in Fig. 19) by defining n nodes which

break up the domain into N triangular elements. We denote by the single coordinate qi the

position of the ith node {Si, si}. Note that we we use reactant (A+BC) Jacobi coordinates,

and will suppress, again for notational simplicity, the subscript a. We expand both the test

function and the solution in a set of n functions, denoted ξi, which are unity at the ith

node and vanish in every triangle which does not include the point qi as one vertex. Inside

this polygonal region these functions are polynomials in Sa and sa. If these polynomials

are restricted to 1st order, the basis functions are irregular pyramids, with the apex located

at the point qi. These 1st order basis functions are designated hat functions in the FEM

literature, for obvious reason. Expanding gives

ψ =
n
∑

i=1

ciξi (146)

Substituting this into Eq. (145), we obtain

n
∑

i=1

[A(φ, ξi) + 2µC(φ, ξi)− 2µED(φ, ξi)] ci = B(φ, ψ)

Note that we have retained ψ(q) unexpanded in the boundary integral, rather than using

the expansion of Eq. (146).

Now, we can replace the arbitrary test function, φ(q) with any one of the n basis functions.
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If, specifically, we chose φ(q) = ξj, we obtain

n
∑

i=1

[A(ξj, ξi) + 2µC(ξj, ξi)− 2µED(ξj, ξi)] ci = B(ξj, ψ)

Since we have n basis functions, we get a similar equation for each choice of test function

with j = 1 · · ·n. This implies that we can rewrite the integrated Schrodinger equation in

matrix form as

[A+ 2µ(C−ED)] c = b (147)

Here, we use the notation

Aij ≡ A(ξi, ξj) =
∫

Γ
∇ξi · ∇ξj dΩ

and, similarly, for the other matrices. Note that b is a vector, not a matrix, since we haven’t

expanded the solution ψ.

B. Boundary integral

As shown in Fig. 19, we define the domain Γ by breaking up the boundary into four

pieces: ΓI , ΓO, Γa, and Γc, so that

bi =
∫

ΓI

ξi (nI · ψ) dΓI +
∫

ΓO

ξi (nO · ψ) dΓO +
∫

Γa

ξi (na · ψ) dΓa +
∫

Γc

ξi (nc · ψ) dΓc (148)

The inner ΓI and outer ΓO delimit regions of high potential energy. Along ΓI and ΓO the

wave function will be vanishingly small, as will be its derivative footnote explaining this?.

Thus, the first two integrals in Eq. (148) will vanish.

At large A–BC separation, the wave function must describe an incoming wave in vi-

brational state m0 with outgoing (scattered) waves in all the other energetically accessible

vibrational levels, namely

lim
Ra→∞

ψ(Ra, ra) = exp(−ikm0
Ra)χm0

(ra) +
M
∑

m=0

S(a)
m0,m exp(ikmRa)χm(ra) (149)
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Here χm(ra) is the coordinate-space wave function for the mth vibrational level of the BC

fragment with energy εm. The wave vector km is defined by (in atomic units)

km = [2µa,bc(E − εm)]
1/2

Finally, the summation in Eq. (149) extends over all M+1 energetically allowed vibrational

levels of the BC reactant (m = 0 · · ·M). The quantity S(a)
m0,m

is a matrix element of the

scattering matrix. The superscript (a) indicates that the individual S-matrix elements refer

to initial and final vibrational states in the A+BC arrangement. The absolute value squared

of S(a)
m0,m

is the probability of the collisional event A+BC(m0) → A+BC(m).

Along the boundary Γa the outward normal is just ~Ra, so that

na · ∇ψ =
dψ

dRa

= i

[

−km0
exp(−ikm0

Ra)χm0
(ra) +

M
∑

m=0

kmRm0,m exp(ikmRa)χm(ra)

]

Thus, the contribution of the Γa boundary to Eq. (148) is

b
(Γa)
i = −ikm0

exp(−ikm0
Rai)

∫

Γa

ξi(Rai, ra)χm0
(ra)dra

+i
M
∑

m=0

kmSm0,m exp(ikmRai)
∫

Γa

ξi(Rai, ra)χm(ra)dra

= gi,m0
+

M
∑

m=0

Fi,mSm0,m (150)

Here

gi,m0
= −ikm0

exp(−ikm0
Rai)

∫

Γa

ξi(Rai, ra)χm0
(ra)dra

and

Fi,m = exp(ikmRai)
∫

Γa

ξi(Rai, ra)χm(ra)dra

Similarly, the contribution of the product boundary Γc can be written in terms of a sum

over all energetically accessible product vibrational levels m′ = 0 · · ·M′ (where the primes

designate the AB product vibrational levels) and the component of the S matrix associated

with reactive events, namely

b
(Γc)
i =

M′

∑

m′=0

Tm0,m′ exp(ikm′Rc)
∫

Γc

ξi(Rai, ra)χm′(rc)drc
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=
M′

∑

m′=0

Fi,m′S(c)
m0,m′ (151)

I believe that this integral can be evaluated numerically by using Eq. (143) and

drc = dra
drc
dra

+ dRa
drc
dRa

= − cosΘdra + sinΘdRa

Formally, then, the boundary vector of Eq. (147) can be written in matrix form as

b = Fsm0
+ g (152)

Here F is a matrix of N rows (the number of nodes) and Nv columns (the total number of

accessible vibrational levels, with Nv = M+M′ + 2); sm0
is a column vector of the S(a)

mo,m

S(c)
mo,m′ matrix elements and g is a column vector of length N . Note because the bi elements

all involve integrals over the hat test functions ξi(Rai, rai), the elements of both the b and g

vectors will vanish except when the index i corresponds to a node located along the Γa and

Γc boundaries.

We can now combine Eqs. (147) and (152) as

[GF]d = g (153)

where G is an n × n matrix, F is an n × nv matrix, d and g are (n + nv) × 1 column

vectors. The first n elements of the g vector are the expansion coefficients of Eq. (146). The

(n+ 1)st − (n+ nv)
th elements of the d vector are the reflection or transmission coefficients

sm0. The matrix F and the vector g are zero except for rows corresponding to nodes lying

along the Γa and Γc boundaries. Solution of this set of linear equations [Eq. (153)] will yield

the scattering wave function as well as the reflection and transmission coefficients.

Unfortunately, this set of equations is underdetermined, since the solution vector d has

more elements than the number of nodes. We can eliminate this deficiency by taking into

account the fact that the wave function along the boundaries Γa and Γc is doubly defined

by Eqs. (146) and (149). In other words, for each value of the index i corresponding to a

node lying on the Γa or Γc boundaries, we have
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ψ(Rai, rai) = ci = exp(−ikm0
Rai)χm(rai) +

M
∑

m=0

Rm0,m exp(ikmRai)χm(rai) (154)

or, in matrix notation

c = h+Psm0

Let nb be the number of nodes lying on the Γa and Γc boundaries. Then, the column vectors

c and h have nb rows, and the matrix P is dimensioned nb × nv.

We can combine this with Eq. (153) as follows:







G F

I −P













c

s





 =







g

h







Here I is a matrix of dimensions nb × n with elements

Iij = δij

If nb > nv, this system of linear equations is overdetermined. However, the additional

equations reflect a linear dependency, because the coefficients of the large number of hat

functions along the Γa and Γc boundaries are constrained to be a linear combination of a

smaller number of vibrational functions multiplied by incoming or outgoing waves. Solution

will yield both the scattering wave function as well as the reactive transmission and inelastic

reflection coefficients, subject to this linear dependency.

IX. EVALUATION OF THE MATRICES

A given triangle Consider a triangle formed by the vertices qi, qj , and qk. In the 1st order

limit, within this triangle the basis function ξi(Sa, sa) can be written as

ξi(Sa, sa) = ai;jkSa + bi;jksa + ci;jk
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