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I. ELECTRONIC STRUCTURE THEORY: ATOMS

A. Hydrogenic atoms

Consider the Hamiltonian for the interaction between a nucleus of charge +Z and a single

electron

H(r, θ, φ) = − h̄2

2mer2
∇2 − Ze2

4πǫor

= − h̄2

2mer2

[

∂

∂r

(

r2
∂

∂r

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

− Ze2

4πǫor

= − h̄2

2mer2

[

∂

∂r

(

r2
∂

∂r

)

+ L̂2(θ, φ)

]

− Ze2

4πǫor
(1)
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where L̂2 is the operator for the angular momentum of the electron moving around the

nucleus. Technically, the mass which appears should be the proton-electron reduced mass

µ =
mpme

mp +me

but since me is ∼2000 times smaller than mp, µ ≃ me.

We can simplify things if we define the distance in terms of the so-called Bohr radius a0

(the radius of the electron in the Bohr theory of the H atom), namely

ρ = r/a0

where

ao =
4πǫoh̄

2

mee2

In terms of ρ the potential becomes

V = − Ze2

4πǫor
=

−e4meZ

(4πǫo)2h̄
2ρ

Problem 1 : Use the chain rule
d

dy
=
dx

dy

d

dx

to show that
h̄2

2me

∂2

∂r2
=

mee
4

2(4πǫo)2h̄
2

∂2

∂ρ2

Use this result to show that in terms of ρ, θ and φ, the Hamiltonian of Eq. (1) is

H(ρ, θ, φ) =
mee

4

(4πǫo)2h̄
2

{

− 1

2ρ2

[

∂

∂ρ

(

ρ2
∂

∂ρ

)

+ L̂2(θ, φ)

]

− Z

ρ

}

The Schrodinger equation for the motion of the electron in a hydrogenic atom is

H(r, θ, φ)ψ(r, θ, φ) = Eψ(r, θ, φ)

http://www.en.wikipedia.org/wiki/Bohr_radius
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or, in terms of ρ, θ and φ

{

− 1

2ρ2

[

∂

∂ρ

(

ρ2
∂

∂r

)

+ L̂2(θ, φ)

]

− Z/ρ

}

ψ(ρ, θ, φ = εψ(ρ, θ, φ) (2)

where

ε =
(4πǫo)

2h̄2

mee4
E

Thus, we see that if we measure the distance in units of a0 (the so-called atomic unit of

distance) and the energy in units of (4πǫo)
2h̄2/mee

4 (the so-called atomic unit of energy),

we can eliminate all the messy constants from the Schrodinger equation. We have already

introduced these atomic units in the first section of Chapter 1. The atomic unit of distance

is called the bohr and the atomic unit of energy, the hartree.

If we multiply Eq. (2) by 2ρ2 and take the right hand side over to the left, we get

[

− ∂

∂ρ

(

r2
∂

∂ρ

)

+ L̂2(θ, φ)− 2Zρ− 2ρ2ε

]

ψ(ρ, θ, φ = 0 (3)

which we can write as
[

Ĥρ(ρ) + L̂2(θ, φ)
]

ψ(ρ, θ, φ) = 0 (4)

where the definition of Ĥρ(ρ) is obvious from comparison of Eqs. (3) and (4).

Here we have separated the Hamiltonian operator into a term depending only on ρ and

a term depending only on θ and φ. In this case, the mathematics of partial differential

equations allow us the write the solution as a product of a term depending only on ρ and a

term depending only on θ and φ, namely

ψ(ρ, θ, φ) = R(ρ)Y (θ, φ)

Inserting this into Eq. (4), dividing by ψ and simplifying we get

Ĥ(ρ)ψ(ρ, θ, φ) = −L̂2(θ, φ)ψ(ρ, θ, φ)

or

Y (θ, φ)Ĥ(ρ)R(ρ) = −R(ρ)L̂2Y (θ, φ)

We can divide by ψ(ρ, θ, φ) = R(ρ)Y (θ, φ), and simplify to get

http://en.wikipedia.org/wiki/Atomic_units
http://en.wikipedia.org/wiki/Atomic_units
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Ĥ(ρ)R(ρ)

R(ρ)
= −L̂

2Y (θ, φ)

Y (θ, φ

Here, the left-hand side depends only on ρ while the right-hand side depends only on θ

and φ. For this equality to be true in general, each side, separately, has to be equal to a

constant. Let’s call this constant K. Thus, we have

− L̂2Y (θ, φ)

Y (θ, φ
) = K (5)

and
Ĥ(ρ)R(ρ)

R(ρ)
= K (6)

Equation (5) can we rewritten as the eigenvalue equation

L̂2Y (θ, φ) = −KY (θ, φ)

which is identical to the Schrodinger equation for the rigid rotor. The solutions must be

finite and single valued. In other words

Y (θ + π, φ) = Y (θ, φ)

and

Y (θ, φ+ 2π) = Y (θ, φ)

To satisfy these boundary conditions, the constant K must equal −j(j + 1), where j is a

positive semi-definite integer (j = 0, 1, 2, . . .)

The solutions are called Spherical Harmonics, Yjm(θ, φ); you can find expressions many places.

The spherical harmonics are normalized and orthogonal. In other words, the integral of the

product of two spherical harmonics over all angles, weighted by the area element in spherical

polar coordinates,

dA = sin θ dθ dφ

is
∫ ∫

Y ∗

j′m′(θ, φ)Yjm(θ, φ)dA = δjj′δmm′

http://www.en.wikipedia.org/wiki/Spherical_harmonic
http://www.en.wikipedia.org/wiki/Spherical_harmonic
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With the restriction that K = −j(j + 1), we can rewrite Eq. (6) as

Ĥ(ρ)R(ρ) = j(j + 1)R(ρ)

or
{

− 1

2ρ2
∂

∂ρ

(

ρ2
∂

∂ρ

)

− Z

ρ
+
j(j + 1)

ρ2
− ε

}

R(ρ) = 0 (7)

We can further simplify this equation by defining a new function G(ρ),

R(ρ) = G(ρ)/ρ

Problem 2 : Show that
1

ρ2
∂

∂ρ

[

ρ2
∂

∂ρ

]

R(ρ) =
1

ρ

∂2G(ρ)

∂ρ2

Then show that Eq. (7) reduces to

[

−1

2

∂2

∂ρ2
− Z

ρ
+
j(j + 1)

2ρ2

]

G(ρ) = εG(ρ) (8)

Equation (8) is entirely equivalent to the usual one-dimensional Schrodinger equation,

with potential

V (ρ) = −Z
ρ
+
j(j + 1)

2ρ2

At large ρ, the second term, which varies as ρ−2 goes to zero faster than the first term, which

varies only as ρ−1. Similarly, as ρ→ 0, the 2nd term goes to +∞ faster than the first term

goes to −∞. The potential is consequently negative at large ρ but positive at small ρ, as

shown in Fig. 1)

The solution G(ρ) has to behave correctly at the origin, and go to zero at infinity. It is

possible to show that the limiting behavior at the origin is

lim
ρ→0

∼ ρj+1

The radial functions R(ρ) are tabulated many places. They are real and proportional to

Laguerre polynomials, and are indexed in the principal quantum number n, as well as in j

(but not m). Here n is restricted to positive integers. Further, for a given n, the allowed

http://www.en.wikipedia.org/wiki/Hydrogen_atom
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FIG. 1. V (ρ) for the hydrogen atom (Z = 1), with j = 0, 1 and 2.

values of j are restricted to all positive integer values less than n − 1. The functions are

normalized by integration over all r with the volume element r2dr, so that

∫

∞

0
Rn′,j′(ρ)Rn,l(ρ)ρ

2dρ =
∫

∞

0
Gn′,j′(ρ)Gn,j(ρ)dρ = δn,n′δj,j′ (9)

The energy, in atomic units, is given by the famous Rydberg formula

εn = − Z2

2n2

Note that the energy is independent of j. For the hydrogen atom all rotational and projection

levels with principal quantum number n are degenerate. This is remarkable. Despite the

large difference between the j = 0, j = 1, and j = 2 potentials seen in Fig. 1, the energy

of the second level in the j = 0 potential equals exactly the energy of the first level in the

j = 1 potential. Similarly, the energy of the third level in the j = 0 potential equals exactly

the energy of the second level in the j = 1 potential, and both equal exactly the energy of

the first level in the j = 2 potential.

The other thing to note is that the radial functions Rnj(ρ) have n− j− 1 nodes. [A node

is a discrete values of ρ greater than zero and less than +∞ where R(ρ) vanishes]. Also, at

large ρ, the behavior of the wave function is given by

lim
ρ→∞

G(ρ) ∼ ρn−1 exp(−ρ/nZ)



7

.

Problem 3 : The radial functions for the 1s and 2p states are

R1s(ρ) = N1s exp(−ρZ)

R2p(ρ) = N2p ρ exp(−ρZ/2)

Use Eq. (9) to determine the two normalization coefficients N1s and N2p.

The radial function for the 2s state is

R2s(ρ) = N2s(1 +Bρ) exp(−ρ/2Z)

Determine the value of N2s and B. In solving this problem you will need the integral

∫

∞

0
xnexp(−αx)dx =

n!

αn+1

At what value of ρ does the node in the 2s radial function occur?

Finally, determine the expectation values of r and 1/r in the 1s, 2s, and 2p states of a

one-electron atom with nuclear charge Z. The expectation value of r is an estimate of the

size of the one-electron atom.

Suppose you have a hydrogen atom with the electron replaced by a negative muon. What

would be the radius of this atom?

B. Other central potential problems

An entirely similar procedure can be used to solve other two-particle problems in which

the potential depends only on the distance between the two particles. The Hamiltonian is

similar to Eq. (1),

H(r, θ, φ) = − h̄2

2µr2

[

∂

∂r

(

r2
∂

∂r

)

+ L̂2(θ, φ)

]

+ V (r) (10)

where µ is the reduced mass of the two particles µ = (mamb)/(ma+mb). The wavefunction

is separable into the product of a spherical harmonic and a radial function R(r). This latter

http://en.wikipedia.org/wiki/Muon
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can be written as G(r)/r, where G(r) satisfies the one-dimensional equation:

[

− h̄2

2µ

∂2

∂r2
+ V (r) +

h̄2j(j + 1)

2µr2

]

G(r) = EG(r) (11)

C. Perturbation and Simple Variational treatment of the He atom

The Hamiltonian for the motion of the two electrons in the He atom is (in atomic units)

H(1, 2) = h(1) + h(2) + 1/r12 (12)

Here, r12 is the distance between the two electrons

r12 = |~r1 − ~r2|

and the one-electron Hamiltonian h is the sum of the operator for the kinetic energy of the

electron and the attraction of the electron to the nucleus, namely

h(1) = −1

2
∇2

1 − Z/r1 (13)

and, similarly, for h(2).

In a perturbation theory approach, we can treat the electron repulsion as the perturbation,

so that the zeroth order Hamiltonian is

H0 = h(1) + h(2) . (14)

This Hamiltonian is separable so that the wavefunction can be written as the product of two

hydrogenic one-electron functions ψn,l,m and the total energy is the sum of the hydrogenic

energies, namely

E(0)
n = −Z

2

2

(

1

n2
1

+
1

n2
2

)

Here the index n is a collective index for n1, l1, m1, n2, l2, m2. In the lowest state, with energy
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E
(0)
0 = −Z2, both electrons are described by the hydrogenic 1s function

1s =

(

Z3

π

)1/2

exp(−Zr) . (15)

The two-electron wavefunction is

ψ
(0)
0 (1, 2) = 1s(1)1s(2)

.

The first-order correction to the energy is just the expectation value of the perturbation,

namely, for the ground state

E
(1)
0 =

〈

ψ
(0)
0 (1, 2)

∣

∣

∣ r−1
12

∣

∣

∣ψ
(0)
0 (1, 2)

〉

=
∫ ∫

1s(1)1s(1)
1

r12
1s(2)1s(2)dV1dV2 (16)

=

(

Z3

π

)2
∫

∞

0
r21dr1

∫

∞

0
r22dr2

∫ π

0
sin θ1dθ1

∫ π

0
sin θ2dθ2

∫ 2π

0
dφ1

∫ 2π

0
dφ2e

−2Zr1e−2Zr2r−1
12

This 6-dimensional “two-electron” integral can be evaluated by making use of the expansion

1

r12
=

∞
∑

λ=0

rλ<
rλ+1
>

Pλ(cos θ12) (17)

Here r< and r> are the smaller and larger of r1 and r2, in other words: r< = min(r1, r2).

Also Pλ is a Legendre polynomial and θ12 is the angle between ~r1 and ~r2. The definition of

the dot product of two vectors implies that

cos θ12 = ~r1 · ~r2/(r1r2)

Thus, using the projection of ~r into Cartesian coordinates

~r = r(cos θẑ + sin θ cosφx̂+ sin θ sinφŷ) ,

we obtain

cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2(cosφ1 cos φ2 + sinφ1 sin φ2)
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Since the s functions are spherical, only the λ=0 term in Eq. (17) will give a non-vanishing

result, so when evaluating Eq. (17), you can use

1

r12
=

1

r>
(18)

Thus, schematically,

∫∫

f(r1)
1

r12
g(r2)dτ1dτ2 = 16π2





∞
∫

0

f(r1)r1dr1

r1
∫

0

g(r2)r
2
2dr2 +

∞
∫

0

g(r2)r2dr2

r2
∫

0

f(r1)r
2
1dr1





(19)

In the first integral on the right-hand-side, r2 is always less than r1 so that 1
r>

= 1/r1. In the

second integral, r1 is always less than r2 so that 1
r>

= 1/r2. Figure 2 depicts the domain of

r1

r2

r2>r1

r 2
=
r 1

r1>r2

FIG. 2. Illustration of the range of integration in Eq. (19

)

integration. Both r1 and r2 can range over all positive values. The diagonal line corresponds

to r1 = r2. In the red shaded region r1 is greater than r2. This region corresponds to the

first double integral in Eq. (19).

Problem 4 : Show that

[1s2|1s2] ≡ [1s1s|1s1s] =
∫ ∫

1s(1)2
1

r12
1s(2)2dV1dV2 =

5Z

8

With the result of this problem, we see that the energy of the ground (1s2) state of the

two-electron ion with nuclear charge Z is predicted to be

E
(0)
0 + E

(1)
0 = −Z2 +

5Z

8
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For He this is –2.75 hartree. The true energy of He can be determined by adding the

binding energies of the two electrons. The binding energy of the first electron is just

the energy of 1s state of He+, namely –2. The binding energy of the second elec-

tron is just the negative of the ionization potential of the He atom. From the NIST

tables of electron energy levels of the atoms and positive ions we find [1] that this is 0.90357

Hartree. Thus, the total electronic energy of He is –2.90357 Hartree. The perturbation the-

ory estimate of –2.75 is quite poor.

One improvement we can make is to introduce a variable screening constant, since each

electron sees not the full nuclear charge of +2. In other words, we can define a generalized

hydrogenic 1s orbital

1sζ =

(

ζ3

π

)1/2

exp(−ζr)

where ζ is a variable screening constant. Then, the variational energy is

Evar = 2 〈1sζ| h |1sζ〉+ [1s2ζ |1s2ζ]

Problem 5 : Show that 〈1sζ| h |1sζ〉 = −Zζ + ζ2/2

Problem 6 : Use this result and the result of problem 5 to determine an expression in terms

of Z and ζ for the variational energy of the He atom. Then minimize this to determine the

optimal screening coefficient ζ and the best variational energy.

Problem 7 : Consider two 1s functions i and j, where 1si has the screening constant ζ

and 1sj has the screening constant ζ ′. Determine expressions for the one electron integrals

〈i|j〉 (overlap), 〈i| − 1
2
∇2|j〉 (kinetic energy), and 〈i| − 1/r|j〉 (nuclear-electronic attraction

energy). The results will be explicit functions of ζ and ζ ′. Also, determine an expression for

the coulomb and exchange two-electron integrals.

[1s2|1s′2] ≡ [1s1s|1s′1s′] =
∫ ∫

1s(1)2
1

r12
1s′(2)2dV1dV2

[1s1s′|1s′1s] =
∫ ∫

1s(1)1s′(1)
1

r12
1s′(2)1s(2)dV1dV2

http://physics.nist.gov/PhysRefData/ASD/levels_form.html


12

In every case, the results will be a function of both ζ and ζ ′. You will first have to

determine the value of the normalization constant Ni in Eq. (26). To check your method

and your result know that

[1s2|1s2] ≡ [1s1s|1s1s] =
∫ ∫

1s(1)2
1

r12
1s(2)2dV1dV2 =

5ζ

8

Also, for ζ = 1 and ζ ′ = 3, the values of the desired integrals are given in Table I.

TABLE I. One- and two-electron integrals involving two 1s functions: 1s with screening constant

ζ = 1 and 1s′ with screening constant ζ ′ = 3.

integral value (Hartree)

〈1s|1s′〉 0.64952

〈1s| − 1
2
∇2|1s′〉 0.94728

〈1s| − 1/r|1s′〉 –1.2990

[1s2|1s′2] 0.89062

[1s1s′|1s′1s] 0.52734

D. Basis set solution of the Hartree equation for the He atom

The choice of the wavefunction for the two-electron He atom which underlies the preceding

section is a product of one-electron functions. This is guided by the separation of the

Hamiltonian in Eq. (14) in which the zeroth-order Hamiltonian is a sum of identical one-

electron terms. The best wavefunction of this type is given by the Hartree approximation,

in which each of the two He 1s electrons moves in the field of the nuclear attraction and in

the averaged field of the repulsion with the other electron. Consequently, in the so-called

Hartree (or Hartree-Fock [2]) approximation the Schrodinger equation for the 1s electron is

the following one-electron, three-dimensional integro-differential equation

[

−1
2
∇2

1 −
2

r1
+
∫

φ2(r2)

r12
dτ2

]

φ(r1) = εHFφ(r1) (20)

Since the solution appears under the integral sign, it is most straightforward to solve

Eq. (20) iteratively. One guesses a solution, φ(0)(r1) determines the so-called “mean-field”
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potential

V (r1) =
∫

φ2(r2)

r12
dτ2 ,

solves the Hartree Schroedinger equation [Eq. (20)] for φ(1)(r1), determines a new mean-field

potential and so on until convergence is reached, at which point the calculated energy εHF at

iteration n+ 1 has not changed significantly from its previous value. Although for atoms it

is possible to do this all numerically, for molecules the only practical method is by expansion

of the solution in a basis set. One iterates until self-consistency is reached. To illustrate

this, for simplicity suppose we expand the Hartree-Fock orbital in terms of just two basis

functions

φ(n)(r) = C
(n)
1 χ1(r) + C

(n)
2 χ2(r) (21)

Here n designates the nth iteration. The averaged electron-repulsion potential is then

∫

φ2(r2)

r12
dτ2 =

∑

k,l

C
(n)
k C

(n)
l

∫

χ∗

k(r2)
1

r12
χl(r2)dτ2 (22)

Here, for simplicity, we will assume that the expansion coefficients are real.

At the n + 1th iteration, as in any linear variational method, we obtain the expansion

coefficients C
(n+1)
i by diagonalizing the matrix of H in the 2×2 basis of {χ1, χ2}. Schemati-

cally, the matrix elements are sums of matrix elements of the one-electron Hamiltonian h(1)

(kinetic energy plus electron-nuclear potential energy) and of the mean-field repulsion V (1),

where

H = h(1) + V12(1) (23)

where

V12(1) =
∫ φ2(r2)

r12
dτ2 (24)

The matrix elements of h(1) are

hkl = −1

2

〈

χk

∣

∣

∣∇2
∣

∣

∣χl

〉

−
〈

χk

∣

∣

∣

∣

2

r1

∣

∣

∣

∣

χl

〉

(25)

We will define the basis functions {χ1, χ2} in terms of so-called Slater (hydrogenic)
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functions

gi = Ni exp(−ζir) (26)

Note that these functions are not orthogonal, so that we will need to use one of the methods

described in Subsection D of Chapter 1 to determine the variational energy.

The matrix elements of the two-electron operator 1/r12 are

(V12)ij =
∑

k,l

C
(n)
k C

(n)
l

∫

χ∗

i (r1)χ
∗

k(r2)
1

r12
χj(r1)χl(r2)dτ2dτ1 (27)

These so-called

[ij|kl] =
∫

χ∗

i (r1)χ
∗

k(r2)
1

r12
χj(r1)χl(r2)dτ2dτ1 =

∫

χ∗

i (r1)χ
∗

j (r1)
1

r12
χk(r2)χl(r2)dτ2dτ1 (28)

In terms of this notation, Eq. (27) becomes

(V12)ij =
∑

k,l

C
(n)
k C

(n)
l [ij|kl] (29)

Note that [ij|kl] defines a square matrix of order N2 × N2 = N4. We will designate this

matrix as (h12)
ij
kl with the understanding that each ijth element is a 2×2 matrix (two possible

values of k and two possible values of l). Let cn define a column vector of length 2. Then

(V12)ij = c
(n) T (h12)

ij
kl c

(n) , (30)

where the superscript T denotes the transpose (that is, a row vector).

Thus, the iterative procedure consists of

(a) Determination of the N ×N matrix of one-electron integrals, h

(b) Determination of the N2 × N2 matrix of two-electron integrals (h12)
ij
kl (many of these

will be the same by symmetry; see below)

(c) An initial choice of the c
(0) vector

(d) Determination of the two-electron matrix V12 from Eq. (30)

(e) Diagonalization of the N×N matrix of the Hamiltonian to determine the new coefficient

vector c(1) and the new Hartree energy ε
(1)
HF

(f) Iteration of steps (d) and (e) until self-consistency is reached, at which point c(n+1) = c(n)



15

and ε
(n+1)
HF = ε

(n)
HF . Usually, one choses an energy cutoff criterion:

∣

∣

∣ε
(n+1)
HF − ε

(n)
HF

∣

∣

∣ ≤ ǫ (31)

where ǫ = 10−8 hartree.

When self-consistency is reached, from Eq. (20) one sees that

εHF =
〈

φ(n) |HHF|φ(n)
〉

=
〈

φ(n) |h| φ(n)
〉

+
[

φ(n)φ(n)|φ(n)φ(n)
]

(32)

In other words, the Hartree-Fock energy is the one-electron energy of the electron in orbital

φ(n) plus the average repulsion energy of this electron with the other electron. Note, then

that twice the Hartree-Fock energy is equal to twice the one-electron energy plus twice the

two-electron repulsion energy. Thus the total energy of the He atom, in the Hartree-Fock

approximation is

EHe = 2εHF −
[

φ(n)φ(n)|φ(n)φ(n)
]

. (33)

This result is important: The variational estimate of the total energy of the atom in the

Hartree-Fock approximation is n
¯
ot equal to the sum of the Hartree-Fock orbital energies.

1. Symmetry of two-electron integrals

For two basis functions χ1 and χ2, there are only 6 distinct matrix elements in the 4×4

matrix of two-electron integrals. If we use the simplified notation 1 ≡ χ1 and 2 ≡ χ2, these

distinct matrix elements arer1 [11|11], [22|22], and

[11|22] = [22|11]

[11|12] = [11|21] = [12|11] = [21|11]

[12|12] = [21|21] = [12|21] = [21|12]

[12|22] = [21|22] = [22|12] = [22|21]

Problem 8 : The Matlab script double zeta he scf nonorthog.m determines the Hartree

energy of a two-electron ion with nuclear charge Z and screening constants given in the

array ze. The script returns, for each iteration, n (the number of the iteration), ε
(n)
HF (the

http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/double_zeta_he_scf_nonorthog.m
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Hartree energy, Eq. (20), C
(n)
1 and C

(n)
2 [the expansion coefficients in Eq. (21)], and EHF (the

Hartree-Fock approximation to the energy of the two-electron system. (Note that the script

double zeta he scf nonorthog.m uses another script two electron.m) Answer the following

questions:

A. In the double zeta he scf nonorthog.m, the two screening constants are set to ζ =

1 and ζ ′ = 3. By varying these, determine the best (lowest) value of the Hartree-Fock

approximation to the energy of the He atom.

B. In the Hartree approximation each electron moves in the average field of the other. In

fact, the two electrons instantaneously avoid each other. As discussed below in Sec. I E, the

the true energy of the two-electron system is lower than the Hartree energy. The difference is

called the “correlation energy.” Using the NIST tables of electron energy levels of the atoms

and positive ions for the experimental ionization energies and the results of applying the

Matlab script double zeta he scf nonorthog.m determine the correlation energies (in eV) for

the two-electron ions He, Li+, Be2+, B3+, C4+, and Ne8+.

For example, for the C4+ ion, you enter C IV in the NIST form, and specify eV in the level

units box. After hitting "retrieve data", scroll down to the entry "C V ... Limit"

where you find the number 64.49390. This is the ionization potential for C4+ → C5++e. You

can calculate the energy of the hydrogenic C5+ ion using the Rydberg formula. Appropriately

adding the energy of C5+ and the ionization potential of C4+ will allow you to determine

the experimental energy of C4+.

E. Configuration Interaction

Expansion of the solution to the Hartree equation [Eq. (20)] in a basis results, by the

variational principle, in an upper bound to the exact Hartree-Fock energy. Often the size of

the basis is characterized by the number of Slater functions [Eq. (26)] which are included,

with the notation “double-zeta” (dz) for two functions, “triple-zeta” (tz) for three functions,

etc. Table II shows the convergence of the Hartree energy for He as the number of basis

functions is increased.

As we mentioned earlier, the true energy of He is –2.90357 Hartree. This is 0.042 Hartree

lower than the Hartree-Fock limit. The reason for this significant error is that in the Hartree-

Fock approximation each electron moves in the average field due to the other electron and the

http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/two_electron.m
http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/double_zeta_he_scf_nonorthog.m
http://physics.nist.gov/PhysRefData/ASD/levels_form.html
http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/double_zeta_he_scf_nonorthog.m
http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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TABLE II. Convergence of calculated Hartree-Fock energies of the 1s2 state of the He atom.

size of basis EHF (Hartree)

double-zeta (dz) –2.855160

triple-zeta (tz) –2.861153

quadruple-zeta(qz) –2.861542

quintuple-zeta (5z) –2.861625

hextuple-zeta (6z) –2.861673

exact a -2.86168

a From numerical solution of Eq. (20).

nucleus. Instantaneously, each electron avoids the other in a more complicated fashion. It is

this instantaneous correlation between the positions of the two electrons which is neglected

in the Hartree-Fock approximation. The correction to the energy is called the “correlation

energy”.

Ecorr = EHF − Eexact

This is usually on the order of 1 eV (0.037 Hartree) for each pair of electrons. Recovery

of the correlation energy can be achieved only by expanding the variational wavefunction

beyond the Hartree-Fock approximation, namely (for He)

Ψ(1, 2) = φHF(1)φHF(2) +
∞
∑

n=1

C(1)
n φHF(1)ψn(2) +

∞
∑

n,m=1

C(2)
nmψn(1)ψm(2)

Here {ψm} is a set of one-electron functions that are orthogonal to the Hartree-Fock 1s

(φHF) orbital. The first summation includes all one-electron (single) excitations out of

the Hartree-Fock wavefunction, while the second summation includes all two-electron (dou-

ble) excitations. The matrix of the Hamiltonian is then constructed in the large basis of

singly and doubly excited states, then diagonalized. This technique is called “configuration-

interaction”, or, CI. In practice, the number of states gets rapidly very large.

For example, suppose you are using a double-zeta s orbital basis. On linear combination

is the 1s Hartree-Fock orbital. The second (orthogonal) combination, call it φ2, defines the

sole excited (or “virtual”) orbital. There is then one singly-excited state φHFφ2 and one

doubly-excited state φ2
2. So the CI consists of 3 states. If you use a double-zeta s orbital

basis, then there are two virtual s orbitals. There are two singly-excited states and three
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doubly-excited states.

If all the virtual orbitals are limited to s functions, then the CI energy is called the “s-

limit”. One can add p, d, etc functions to the basis, which will all be orthogonal to φHF. The

CI energy is then called the sp-limit, the spd-limit, etc. Table III shows the convergence of

the calculated energy of He as the size of the CI is increased. Eventually, we do get close

to the three energy, but the convergence is slow. The number of states and the number

of two-electron integrals goes up very dramatically. Thus the calculations rapidly become

more difficult while the differential improvement of the calculated energy becomes smaller

and smaller.

TABLE III. Convergence of calculated CI energies (Hartree) for the 1s2 state of the He atom.

basis limit ECI ∆E
a configurations two-electron integrals

v5z Hartree-Fock -2.86162 4.2×10−2 1

v5z s-limit –2.87891 2.5×10−2 15 120

v5z sp-limit –2.90036 3.2×10−3 45 2535

v5z spd-limit –2.90255 1.0×10−3 114 21726

v5z spdf -limit –2.90304 5.3×10−4 195 82977

v5z spdf -limit –2.90315 4.2×10−4 261 163437

v6z spdf -limit –2.90339 1.8×10−4 522 701058

exact b –2.90357

a Ecalc − Eexact.
b Sum of first and second ionization energies.

For a system with more than two electrons, the summation extends over triple, quadru-

ple, and higher-order excitations. In practice, it is very difficult to carry out an exact CI

calculation including all triple or higher-order excitations. Triple excitations can, however,

be included perturbatively. Table IV compares the calculated energies for the Be atom with

the exact value. The total correlation energy is 2.56 eV. Of this 82% is recovered by a CI

calculation including all single- and double-excitations, and 93% is recovered by the calcu-

lation in which triple excitations are included perturbatively. Still, 8% of the correlation

energy, 0.2 eV, is due to higher-order excitations, which can be included only by extremely

computer-intensive calculations.
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TABLE IV. Convergence of calculated spdfg-limit CI energies (Hartree) for the 1s22s2 state of the

Be atom.

basis calculation ECI ∆E
a two-electron integrals

v5z Hartree-Fock –14.57301 9.4×10−2 5347542

v5z CI-SD –14.66241 4.9×10−3 5347542

v5z CC-SD(T)b –14.66649 8.7×10−4 5347542

exact c –14.66737

a Ecalc − Eexact.
b Coupled-cluster calculation with perturbative inclusion of triple excitations.
c Sum of ionization energies.

F. Spin states of two-electron systems

In the discussion so far, we have ignored the spin of the electron. The electronic Hamilto-

nian [Eq. (12)] does not include the spin. Thus, a complete wavefunction including the spin

can be written by multiplying a spatial wavefunction of the form 1s(1)1s(2) by a component

describing the spin of the electrons, namely

Ψ(1, 2) = 1s(1)1s(2) |S(1, 2)〉 . (34)

Each electron has a spin of 1/2. The spin wavefunction of the electron can be written as

|sms〉, where the projection quantum number is ms = ±1/2. The spin wavefunction for two

electrons can be obtained by vector coupling the spin-wavefunction of each electron.

In quantum mechanics two angular momenta ~j1 and ~j2 can be coupled to form a state of

angular momentum j, with |j1 − j2| ≤ j ≤ j1 + j2. Thus, the total spin for the two-electron

system can be either S = 0 or S = 1. The projection quantum numbers MS can be only

0 for S = 0, but −1, 0,+1 for S = 1. Since the total projection quantum number is the

sum of the projection quantum numbers for each of the two electrons, the wavefunction for

S = 1,MS = 1 must be (to within an arbitrary phase)

|S = 1,MS = 1〉 = |s1 = 1/2, ms1 = 1/2〉|s2 = 1/2, ms2 = 1/2〉
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To simplify the notation, we write this as

|11〉 =
∣

∣

∣

∣

1

2
,
1

2

〉

Here we have suppressed the values of s1 and s2, which are always 1/2, and designated

the so-called “uncoupled” state, in which the ms quantum numbers are specified for each

electron, with the general notation |ms1ms2〉.
Now, the wavefunction for the coupled state with S = 1,MS = 0 can be obtained by the

general angular momentum lowering operator. This is

j−|jmj〉 = [j(j + 1)−m(m− 1)]1/2|j,m− 1〉

or, in the particular case where S = 1

S−|11〉 = [1× 2− 1× 0]1/2|10〉 = 21/2|10 >

or, reversing the order

|10〉 = 2−1/2|11〉

The lowering operator for the total spin is the sum of the lowering operators for each indi-

vidual spin

S− = s1− + s2− ,

where the effect of s1− on the spin wavefunction for electron 1 is

s1−

∣

∣

∣

∣

1

2

〉

=
[

1

2
× 3

2
− 1

2

(−1

2

)]1/2 ∣
∣

∣

∣

−1

2

〉

=
∣

∣

∣

∣

−1

2

〉

Problem 9 : Use the uncoupled and coupled lowering operators to show that (the coupled

wavefunction is on the left and the uncoupled wavefunction is on the right

|10〉 = 2−1/2
(∣

∣

∣

∣

1

2
,
−1

2

〉

+

∣

∣

∣

∣

−1

2
,
1

2

〉)

(35)
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and

|1− 1〉 =
∣

∣

∣

∣

−1

2
,
−1

2

〉

Now, the wavefunction for the sole state with S = 0 and MS = 0 must be a linear

combination of the uncoupled wavefunctions |ms1 = ±1/2, ms2 = ∓1/2〉. In other words

|00〉 = C1,−1

∣

∣

∣

∣

1

2
,
−1

2

〉

+ C−1,1

∣

∣

∣

∣

−1

2
,
1

2

〉

(36)

Because the |10〉 and |00〉 states are eigenfunctions of Ŝ2 with different eigenvalues, they must

be orthogonal. Since the functions must also be normalized, we must have C1,−1 = −C−1,1.

This implies that

|00〉 = 2−1/2
(∣

∣

∣

∣

1

2
,
−1

2

〉

−
∣

∣

∣

∣

−1

2
,
1

2

〉)

(37)

The electronic Hamiltonian [Eq. (12)] is symmetric with respect to exchanging the labels

of the two electrons. Thus, the wavefunction must be symmetric or antisymmetric with

respect to this operation. We see immediately that the three S = 1 wavefunctions with

MS = +1, 0,−1 are all symmetric, while the S = 0 wavefunction is antisymmetric with

respect to this interchange. The overall two-electron wavefunction which is a product of a

spatial component and a spin-component must be antisymmetric with respect to interchange,

since the electrons are fermions. Thus, in cases where the spatial wavefunction is symmetric

[as, for example, the ground state of the He atom 1s(1)1s(2)], the spin wavefunction must

be antisymmetric. Hence, the ground state of the He atom must be a S = 0 state. This is

called a singlet state, because the projection degeneracy of the spin wavefunction, 2MS +1,

is equal to 1.

G. Excited states of the He atom

Although the ground state of He must be a single, the same is not true of any of the excited

states. Consider, for example, the 1s2p state, obtained by exciting one of the electrons to the

2p state. This transition is analagous to the Lyman α transition in the H atom. There are

four possible wavefunctions, which are both antisymmetric with respect to particle exchange.

The first is the non-degenerate single state

∣

∣

∣

11s2p
〉

= 2−1/2[1s(1)2p(2) + 2p(1)1s(2)]|00〉
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The second is for the triplet state, which is triply degenerate, namely

∣

∣

∣

31s2p
〉

= 2−1/2[1s(1)2p(2)− 2p(1)1s(2)]|11〉

In both cases, the ket on the right-hand-side is the coupled |SMS〉 spin function.

The expectation value of the Hamiltonian [Eq. (12)] in these states is

〈

1(3)1s2p
∣

∣

∣H(1, 2)
∣

∣

∣

1(3)1s2p
〉

= 〈1s|h|1s〉+ 〈2p|h|2p〉+ [1s2|2p2]± [1s2p|2p1s]

where the + sign applies to the singlet state and the – sign, to the triplet state. As might be

anticipated, the expectation value of the energy is the one-electron energy of each electron,

one described by a 1s orbital and the other, by a 2p orbital. In addition, the two electrons

repel one-another, which contributes the [1s2|2p2] repulsion term, which is the averaged

Coulomb interaction between an electron whose probability distribution is 1s2 and an elec-

tron whose probability distribution is 2p2. Finally, there is the exchange term [1s2p|2p1s].
This is a quantum term, which arises because of the requirement that the electrons be

indistinguishable.

The exchange term (or “exchange integral”) is the self-Coulomb-repulsion of the overlap

1s(1)2p(1) charge density. Since this self-repulsion will be a positive quantity, the triplet

state will lie lower than the singlet state. This will be true for all the 1snp excited states of

He. However, since the np orbitals become more and more diffuse as n increases, the overlap

charge density will 1s(1)np(1) will become smaller and smaller, and hence the [1snp|np1s]
exchange integral will become smaller and smaller as n increases. Consequently, the singlet

triplet splitting will decrease as the principal quantum number increases.

Problem 10 : Consider the singlet and triplet wavefunctions for the 1s2p state of the He

atom. Assume that the 1s and 2p functions are simple hydrogenic orbitals with screening

constants ζs and ζp. Use the matrix elements given in Problem 5 and the following results

〈

2pζp
∣

∣

∣h
∣

∣

∣2pζp
〉

=
1

2
(−Zζp + ζ2p )

[1s2ζs |2p2ζp] =
1

32
ζ(1− τ 2)(14− 7τ − τ 2 + 3τ 3 − τ 4)
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[1sζs2pζp|2pζp1sζs] =
7

96
ζ(1 + τ)3(1− τ)5

where

τ = (ζs − ζp)/(ζs + ζp)

and

ζ =
1

2
(ζs + ζp)

to obtain an expression for the variational energy of the 1(3)1s2p states of He. Each of these

expressions will be a function of ζs and ζp, the screening constant for the 1s and 2p orbitals.

Now, vary the screening constants to minimize the energy of the 1(3)1s2p states. Note

that the screening constants don’t have to be the same for the singlet as for the triplet states.

Do the optimal screening constants agree with your guess what these should be based on

considerations of the physics?

Calculate the splitting between the 1s2 and the 1(3)1s2p states and between the singlet

and triplet components of the 1s2p state. Compare your results with the experimental value

of these splittings, which you can get from the NIST tables.

H. Gaussian orbitals

In application of the Hartree-Fock methodology to many-electron atoms and, especially,

molecules, the calculation of the two-electron integrals between functions which decrease

exponentially in r is very time-consuming. Much faster calculations can be achieved by

expansion of the electronic wavefunction as a linear combination of Gaussian

R(r) =
∑

j

Cj exp(−αjr
2) (38)

rather than hydrogenic (often called Slater) orbitals

R(r) =
∑

j

Cj exp(−ζjr) (39)

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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Consider, for simplicity the hydrogen atom. We will expand the 1s wavefunction in terms

of Gaussian orbitals. The simplest case will be to truncate the series at one term, namely

1s(r) = N exp(−αr2) (40)

Problem 11 : Determine the value of the normalization constant, so that the Gaussian 1s

function is normalized, namely

〈1sα|1sα〉 =
∫∫∫

1s(r)2r2 sin θdφdθdr = 1 (41)

Then determine an expression for the overlap integral

Sα′α ≡ 〈1s(α′)|1s(α)〉 =
∫∫∫

1s′α(r)1sα(r)r
2 sin θdφdθdr (42)

Hint: To check your work, first show that

lim
α′→α

Sα′α = 1

You can also use the symbolic package in Matlab to evaluate the necessary integrals. For

example,
∫

∞

0
exp(−αr2)r2dr = α−3/2

∫

∞

0
exp(−u2)r2dr

If you use Matlab, you will get the output

>> syms u

>> int(exp(-u*u)*u*u,u,0,inf)

ans = pi^(1/2)/4 >> pretty(ans)

1/2

PI

-----

4
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To determine the energy of the H atom with a single Gaussian approximation to the

1s orbital, you will need to evaluate the matrix element of the one-electron Hamiltonian

of Eq. (13) with Z = 1. For a spherical s orbital one need consider only the part of the

Laplacian which involves differentiation with respect to r, namely

T̂(~r) = T̂(r) = − 1

2r2
∂

∂r

[

r2
∂

∂r

]

(43)

You can use the symbolic algebra feature of Matlab to evaluate the derivatives, for example:

>> syms r

>> syms alpha

>> oness=exp(-alpha*r*r)

oness =1/exp(alpha*r^2)

>> diff(r^2*diff(oness))/r^2)

ans =

-((6*alpha*r^2)/exp(alpha*r^2) - (4*alpha^2*r^4)/exp(alpha*r^2))/r^2

>> simplify(ans)

ans = (2*alpha*(2*alpha*r^2 - 3))/exp(alpha*r^2)

Problem 12 : Obtain the analytic expression for Hα′,α ≡ 〈1s(α′)|H|1s(α)〉 and Sα′,α. Hint:

to check your work, S(1,1) should equal 1, S(1,3)=0.8093, H(1,1)=–0.095769 and H(1,3)=–

0.0054467. Then write a Matlab function script to evaluate Hα′,α and Sα′,α for arbitrary

values of α and α′.

Your script for Hα′,α and Sα′,α should be of the form

function elts=single_gaussian_matrix_elts(alph,alphp)

...

...

...

elts=[s1s h1s];

where s1s and h1s are the overlap and Hamiltonian matrix elements.

Then, define a simpler function routine in which α is always equal to α′, namely

function hmat_one=single_gaussian_matrix_elts(alph)
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...

...

...

hmat_one=h1s;

Here, the overlap is always equal to one, since the function is normalized (You did normalize
it, right?). Now that you can obtain the expectation value of the Hamiltonian for a single
Gaussian function, you should be able to determine the value of α which minimizes the
calculated energy. Do this first by trial and error, introducing a value, calculating the
energy, and then guessing a new value and so on

en=hmat_one(1);

Problem 13 : What is the best value of α and what is the corresponding energy. Remember

that the variational principle guarantees that this value should always be greater than –0.5

(in atomic units).

Then use Matlab’s automatic function minimization fminsearch to obtain the best value

emin=fminsearch(’hmat_one’,1)

which starts from an initial trial value – here 1 – and iterates until the minimum is found.

Pretty cool, eh? The result you obtain should agree with the result you obtained by hand.

Let’s compare the Gaussian function for the 1s state with the true wavefunction, which

is (the following expression is normalized )

1s(r) =

√

1

π
exp(−r) (44)

To plot any function it is easiest to use Matlab’s ezplot command

syms r

ones=exp(-r)*sqrt(2/pi);

ezplot(’ones’,0,3)

This will plot the 1s orbital for 0 ≤ r ≤ 3. To plot two functions on the same plot

syms r

ones=exp(-r)*sqrt(2/pi);
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f=r*exp(-r)*sqrt(2/pi);

ezplot(’ones’,0,3)

hold

ezplot(’f’,0,3)

The command hold plots on top of a previous figure.

Problem 14 : Plot your best Gaussian function compared to the true 1s orbital. You can

label the axes by the commands xlabel(’string’) and ylabel(’string’).

Problem 15 : We will use the linear variational method to determine the best three-

Gaussian approximation to the H-atom 1s orbital, namely

φ1s =
N
∑

i=1

CiNiexp(−αir
2) (45)

First, you will need to write a function script, let’s call it ngauss, that determines the

energy of φ1s given a specific choice of the three coefficients αi. In this script, you will need

to (a) set up the 3×3 overlap matrix and the 3×3 Hamiltonian matrix, then (b) diagonalize

this matrix, and then (c) determine the lowest eigenvalue. When this is done, and debugged,

then you will use the Matlab fminsearch command to find the best choice of the coefficients.

To use fminsearch, there can be only one argument of the function ngauss, so that you

will have to set up ngauss as follows (the variable alph is a vector containing the multiple

values of the screening constant. The length of the expansion N is determined inside the

function script by command length :

function energ=ngauss(alph)

n=length(alph);

% determine the matrix elements of H and S

for i=1:n

for j=i:n

hmat(i,j)= h(alph(i),alph(j));

smat(i,j)= s(alph(i),alph(j));

end

end

% fill in the lower triangle of the matrix
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mat=mat+triu(mat,1)’

% then diagonalize the matrix and extract the lowest root

energ=eigs(hmat,smat)

Note, calculating only the upper triangle of theH and S matrix eliminates some unnecessary

computer time – always an important consideration. This script involves a double nested

loop (called a “do loop” in FORTRAN). Note also, that the overlap matrix is not diagonal,

so you have your choice of the three diagonalization methods discussed in Subsection D of

Chapter 1. Here, we have chosen the generalized eigenvalue method.

Problem 16 : When your function script ngauss is fully debugged, then determine the

best variational approximation to the energy of the H atom using three (N = 3) Gaussian

functions, by invoking the command fminsearch(′ngauss′,[alph1 alph2 alph3]) where

alph1, alph2, and alph3 are your three initial guesses. There is no guarantee that your

initial guesses are a good starting point, so try with various other choices.

I. Coupling of two angular momenta

For reference, the angular momentum raising and lowering operators are defined by

±|jm〉 = [j(j + 1)−m(m∓ 1)]1/2 |j,m± 1〉 .

Now, consider two angular momenta ~j1 and ~j2. The so-called “uncoupled states” are the

products of the angular momentum states associated with each operator, namely

|j1m1j2m2〉 ≡ |j1m1〉 |j2m2〉

There are (2j1+1)(2j2+1) of these product states, each of which is an eigenfunction of the

operators j1z , j
2
1 , j2z , j

2
2 .

Now consider the total angular momentum ~J = ~j1 +~j2 and its projection Jz = j1z + j2z.

Since any component of ~j1, as well as its square, commutes with any component of ~j2,

because they operate in different spaces, you can show that j21 and j22 commute with both

http://www2.chem.umd.edu/groups/alexander/chem691/chap1.pdf
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Jz and J2. However,

J2 = j21 + j22 + 2~j1 ·~j2 = j22 + j22 + 2 (j1xj2x + j1yj2y + j1zj2z)

Since j1z does not commute with either j1x or with j1y, it is clear that neither j1z nor j2z

commute with J2. We can thus replace the four commuting operators j1z, j
2
1 , j2z , j

2
2 with

another set of four commuting operators J2, Jz, j2z, j
2
2 . The eigenfunctions of this latter

set of operators are called “coupled states” and are designated |j1j2JM〉. The two sets of

eigenfunctions must be related by an orthogonal transformation, namely

|j1j2JM〉 =
∑

m1 m2

Cj1m1j2m2,JM |j1m1j2m2〉 ≡
∑

m1 m2

(j1m1j2m2 |JM) |j1m1j2m2〉 (46)

The coefficients which appear on the right-hand side are called Clebsch-Gordan (CG) coefficients,

and are designated (j1m1j2m2 |JM). Because ~J = ~j1 + ~j2, it follows that Jz = j1z + j2z.

It then follows that M = m1 +m2, in other words, the projection of the total spin equals

the sum of the individual projection quantum numbers. This relation can be ensured by

requiring that the CG coefficients vanish unless m1 + m2 = M . Further, we assume that

both the coupled and uncoupled states are normalized and orthogonal, in other words

〈j1j2J ′M ′ |j1j2JM〉 = δJ,J ′δM,M ′ (47)

and

〈j1m′

1j2m
′

2 |j1m2j2m2〉 = δm1,m′

1
δm2,m′

2
(48)

These two equations, along with Eq. (46), can be used to derive the two orthogonality

relations for the CG coefficients:

∑

m1,m2

(j1m1j2m2 |JM) (j1m1j2m2 |J ′M ′) = δJ,J ′δM,M ′

and
∑

m1,m2

(j1m1j2m2 |JM) (j1m1j2m2 |J ′M ′) = δJ,J ′δM,M ′

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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and
∑

J,M

(j1m1j2m2 |JM) (j1m
′

1j2m
′

2 |JM) = δm1,m′

1
δm2,m′

2

Because the transformation of Eq. (46) is an orthogonal transformation, its inverse is just

the transpose of the matrix of CG coefficients, assuming that they are real

Consider, for illustration, the case where j1 = 2 and j2 = 1. The following figures shows all

the possible values ofm1 andm2. Each filled circle indicates one of the |j1m1j2m2〉 uncoupled

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

m
1

m
2

M=2 M=3M=1M=0

FIG. 3. Illustration of all uncoupled states for j1 = 2 and j2 = 1.

states. There are (2j1 + 1)(2j2 + 1) = 15 of these. The largest value of M = m1 +m2 is

3. The next value is M = 2 and so forth. The diagonal red lines connect all the possible

states for each indicated value of M . There is one state for M = 3, two for M = 2, three

for M = 1 and so forth.

J. Determination of Clebsch-Gordan coefficients

To determine the Clebsch-Gordan coefficients we start with the largest value of J and

M . As we can see in Fig. 3, this is J = j1 + j2 (J = 3 in the example shown) and

M = j1 + j2. Since there is only one uncoupled state which satisfies these criteria – the

so-called “stretched” state – Eq. (46) reduces to

|j1j2, J = j1 + j2,M = j1 + j2〉c = (j1, m1 = j1, j2, m2 = j2 |j1 + j2, j1 + j2) |j1, m1 = j1, j2, m2 = j2〉u
= (j1j1j2j2 |j1 + j2, j1 + j2) |j1j1, j2j2〉u (49)

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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Here the subscripts c and u will designate the coupled and uncoupled states. In the first line

we have explicitly indicated that the projection quantum numbers m1 and m2 are equal to

their largest values (the “stretched” values). In the second line, for notational simplicity, we

have eliminated the “m1 = j1” (and so forth) terms. Since both the uncoupled and coupled

states are assumed normalized, the coefficient has to equal one (at least in magnitude). Thus

we can say, choosing the phase factor to be +1,

(j1j1j2j2 |j1 + j2, j1 + j2) = 1

Now, let us operate on both the left and the right hand sides of Eq. (49) with the lowering

operator J− = j1−+j2−. This gives for the operation of J− on the coupled state (the left-hand

side)

[J(J + 1)−M(M − 1)]1/2 |j1j2, J = j1 + j2,M = j1 + j2 − 1〉c
= [(j1 + j2)(j1 + j2 + 1)− (j1 + j2)(j1 + j2 − 1)]1/2 |j1j2, J = j1 + j2,M = j1 + j2 − 1〉c
= [2(j1 + j2)]

1/2 |j1j2, j1 + j2, j1 + j2 − 1〉c (50)

and, for the action of J− on the uncoupled state (the right-hand side)

J− |j1j1j2j2〉u = (j1− + j2−) |j1j1j2j2〉u
= [j1(j1 + 1) + j1(j1 − 1)]1/2 |j1, j1 − 1, j2j2〉u + [j2(j2 + 1) + j2(j2 − 1)]1/2 |j1j1j2, j2 − 1〉u
=
√

2j1 |j1, j1 − 1, j2j2〉u +
√

2j2 |j1j1j2, j2 − 1〉u (51)

Equating the two previous equations gives

[2(j1 + j2)]
1/2 |j1j2, j1 + j2, j1 + j2 − 1〉c =

√

2j1 |j1, j1 − 1, j2j2〉u +
√

2j2 |j1j1j2, j2 − 1〉u

or

|j1j2, j1 + j2, j1 + j2 − 1〉c =
[

j1
j1 + j2

]1/2

|j1, j1 − 1, j2j2〉u +
[

j2
j1 + j2

]1/2

|j1j1j2, j2 − 1〉u
(52)

The two terms on the right-hand side must be the CG coefficients as defined in Eq. (46).
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Thus, we see that

(j1, j1 − 1, j2, j2 |j1 + j2, j1 + j2 − 1) =

[

j1
j1 + j2

]1/2

and

(j1, j1, j2, j2 − 1 |j1 + j2, j1 + j2 − 1) =

[

j2
j1 + j2

]1/2

Explicitly, in the case where j1 = 2 and j2 = 1 (as in Fig. 3), we have

|2132〉c = (2111|32)|2111〉u + (2210|32)|2210〉u
= (2/3)1/2|2111〉u + (1/3)1/2|2210〉u (53)

By continuing the application of J− = j1− + j2−, we can generate all the GC coefficients for

J = j1+ j2 for all allowed values ofM (M = j1+ j2−2, j1+ j2−3, ...,−j1− j2+1,−j1− j2).
Now, we need the Clebsch-Gordan coefficients for the next lower value of J , namely

J = j1 + j2 − 1. For this value of J , the highest value of M is j1 + j2 − 1. In this case,

Eq. (46) reads

|j1j2, j1 + j2 − 1, j1 + j2 − 1〉c = (j1j1 − 1j2j2 |j1 + j2 − 1, j1 + j2 − 1) |j1, j1 − 1, j2j2〉u
+ (j1j1j2j2 − 1 |j1 + j2 − 1, j1 + j2 − 1) |j1j1j2, j2 − 1〉u(54)

Now, the left hand sides of Eqs. (52) and (54) must be orthogonal, because J = j1 + j2

for the first and J = j1+ j2−1. Consequently, the right hand sides must also be orthogonal.

Since the functions must also be normalized, it is clear that

(j1j1 − 1j2j2 |j1 + j2 − 1, j1 + j2 − 1) = ±
[

j2
j1 + j2

]1/2

(55)

and

(j1j1j2j2 − 1 |j1 + j2 − 1, j1 + j2 − 1) = ∓
[

j1
j1 + j2

]1/2

(56)

To make things more concrete, in the case where j1 = 2 and j2 = 1 we have

|2122〉c = (2111|22)|2111〉u + (2210|22)|2210〉u
= ±(1/3)1/2|2111〉u ∓ (2/3)1/2|2210〉u (57)

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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The sign is established by the so-called Condon and Shortley phase convention that all

matrix elements of j1z, which are non-diagonal in J , are real and non-negative. [3] Consider,

then, the matrix element

〈2132| l1z |2122〉u = ±21/2

3
〈2111|l1z|2111〉u ∓

21/2

3
〈2210|l1z|2210〉u

∓2

3
〈2111|l1z|2210〉u ±

1

3
〈2210|l1z|2111〉u (58)

Now, we know that (suppressing the h̄) l1z|2111〉u = |2111〉u and l1z|2210〉u = 2|2110〉u.
Thus we find

〈2111|l1z|2111〉u = +1 ,

〈2210|l1z|2210〉u = +2 ,

〈2210|l1z|2111〉u = 〈2210|2111〉u = 0 ,

and

〈2111|l1z|2210〉u = 〈2111|2211〉u = 0 ,

Thus, we find that

〈2132| l1z |2122〉u = ±21/2

3
∓ 2

21/2

3
= ∓21/2

3
(59)

Consequently, for the Condon-Shortley phase convention to be satisfied we have to chose

the lower sign in Eqs. (55) and (56), so that

(2111|22) = −
(

1

3

)1/2

and

(2210|22) = +
(

2

3

)1/2

Problem 17 You know that |2133〉c (the stretched state) = |2211〉u. The expression for

|2132〉c is given by Eq. (53). By repeated application of the lowering operator, generate the

CG coefficients for j1 = 2, j2 = 1, J = 3,M for M = 1 and M = 0.

Problem 18 For j1 = 2 and j2 = 1 the lowest allowed value of J is 1. In problem 17

you have obtained the expression for the |2131〉c state in terms of uncoupled states. The
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comparable expression for the |2121〉c state is

|2121〉c = −2−1/2|2011〉u + 6−1/2|2110〉u + 3−1/2|221− 1〉u

For J = 1, the comparable expression would be

|2111〉c = a|2011〉u + b|2110〉u + c|221− 1〉u

By requiring the state |2111〉c to be (a) normalized and (b) orthogonal to the J = 3 and

J = 2 states with M = 1, you can determine the values of the coefficients a, b, and c,

to within an arbitrary sign. To fix the sign, you can impose the Condon-Shortley phase

convention, requiring that

〈2121|l1z|2111〉c ≥ 0

The coefficients a, b, and c, are, in fact, the CG coefficients (2011|11), (2110|11), and

(221− 1|11). Hint: the value of (2011|11) is (1/10)1/2.

K. Slater Determinants – Atoms

For an N -electron atomic or molecular system with N ≥ 2, the electronic wavefunction

can still be expressed as a product of one-electron functions φ1(~r) ... φN(~r). In addition

to the spatial coordinates of the electron ~r, one needs to specify its spin. We designate by

the name “spin-orbital” the product of the spatial function φi(~r) and a spin eigenfunction.

Consider, then, a set of N one-electron spin-orbitals {ϕ1, ϕ2, ...ϕN−1, ϕN}, where

ϕi ≡ φi(~r) |sms〉 .

Here |sms〉 designates the total spin s and its projection ms. For an electron s = 1/2 and

ms = ±1/2. You will often see the compact notation

ϕi ≡ φi(~r)
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or

ϕi ≡ φ̄i(~r)

Here the superscript bar indicates ms = −1/2 (down spin) and the absence of a bar indicates

ms = +1/2 (up spin). We assume that these functions are orthogonal and normalized, so

that
∫

ϕ∗

iϕjdV ds = δij . The Slater determinantal wavefunction for the Li atom is

Ψ(1, 2, 3) =
1√
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1s(1) 1s̄(1) 2s(1)

1s(2) 1s̄(2) 2s(2)

1s(3) 1s̄(3) 2s(3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(60)

where | | denotes a determinant. The electronic Hamiltonian is

H(1, 2, 3) = h(1) + h(2) + h(3) +
1

r12
+

1

r13
+

1

r23

Show that the variational energy is given by

〈Ψ(1, 2, 3) |H(1, 2, 3)|Ψ(1, 2, 3)〉 = 2h1s+h2s+[1s1s|1s1s]+2 [1s1s|2s2s]−[1s2s|2s1s] (61)

where

h1s =
∫

1s(1)h(1)1s(1)dτ1 =
∫

1s(2)h(2)1s(2)dτ2 =
∫

1s(3)h(3)1s(3)dτ3 (62)

and, similarly, for h2s. Also

[ϕϕ |χχ ] =
∫ ∫

ϕ(1)∗ϕ(1)
1

r12
χ(2)∗χ (2) dτ1dτ2 (63)

and

[ϕχ |χϕ ] =
∫ ∫

ϕ(1)∗χ(1)
1

r12
χ(2)∗ϕ (2) dτ1dτ2 (64)

Now, consider the carbon atom (1s22s22p2). Give the correct expression similar to Eq. (61)

for the variational energy in terms of one-electron and two-electron Coulomb and exchange

integrals.

In fact, the carbon atom has more than one 1s22s22p2 electronic state. From the appli-

cation of the tableau method, you know that there are 15 different states, corresponding to

http://www2.chem.umd.edu/groups/alexander/chem691/tableau_method.pdf
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the nine 3P states with L = 1, S = 1, five 1D states with L = 1, S = 0 and one 1S state with

L = 0, S = 0. We can use a simplified Slater determinantal notation for the wavefunctions

for each of these states. For example, the 3P state with ML = 1 and MS = 1 corresponds

to 1s22s22p12p0, where the spins of both 2p electrons are ms = 1/2. The Slater determinant

for this state is

∣

∣

∣

3P11

〉

=
1√
6!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1s(1) 1s̄(1) 2s(1) 2s̄(1) 2p1(1) 2p0(1)

1s(2) 1s̄(2) 2s(2) 2s̄(2) 2p1(2) 2p0(2)
...

...
...

...
...

...

1s(6) 1s̄(6) 2s(6) 2s̄(6) 2p1(6) 2p0(6)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(65)

For simplicity, we can suppress the 1s and 2s spin-orbitals and write this as

∣

∣

∣

3P11

〉

= |p1p0| (66)

The wavefunctions for the other (2S+1)LML,MS
states can be obtained by application of

the S− and L− lowering operators. For example

L−

∣

∣

∣

3P11

〉

= (l1− + l2−) |p1p0| (67)

Now l1− |p1p0| = 21/2 |p0p0|. This vanishes, because the 5th and 6th columns of the Slater

determinant are equal and any determinant vanishes if two columns are the same. However,

l2− |p1p0| = 21/2 |p1p1|, which does not vanish. Similarly, L− |3P11〉 = 21/2 |3P01〉. Thus, we

find that
∣

∣

∣

3P01

〉

= |p1p−1| (68)

Note that we don’t need to operate on the 1s or 2s spin-orbitals with the lowering operators

because l− operating on an s function (l = 0) gives zero and s− gives either zero or leads to

two identical columns.

Problem 19 : Determine the determinantal wavefunctions for the other 13 C states. Write

these wavefunctions in the simplified |pipj| notation of Eqs. (68) and (69). The other 3P

wavefunctions can be generated, as above, by application of L− and S−. The
1D wavefunc-
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tions can be generated by starting with

∣

∣

∣

1D20

〉

= |p1p̄1| (69)

and then using L−. Note, that the wavefunctions for ML and/or MS < 0 can be generated

almost by inspection from those with ML and/or MS > 0.

To help you solve this problem, several of the desired wave functions are:

∣

∣

∣

3P00

〉

= S−

∣

∣

∣

3P01

〉

= (s1− + s2−)|p1p−1|

= N (|p̄1p−1|+ |p1p̄−1|) = N (−|p−1p̄1|+ |p1p̄−1|)

= 2−1/2 (−|p−1p̄1|+ |p1p̄−1|) (70)

Here, the normalization constant can be obtained from the applications of S− on the left,

which gives a factor of [S(S + 1) −MS(MS − 1)]1/2 =
√
2 on the left and the applications

of s1− and s2− on the right, which give a factor of [s(s + 1) − ms(ms − 1)]1/2 = 1 on the

right. Alternatively, and more simply, N is fixed so the the sum of Slater determinants is

normalized, namely N = 2−1/2.

Similarly, we obtain

∣

∣

∣

1D10

〉

= L−

∣

∣

∣

1D20

〉

= (l1− + l2−)|p1p̄1| = 2−1/2 (|p0p̄1|+ |p1p̄0|)

and

∣

∣

∣

1D00

〉

= L−

∣

∣

∣

1D10

〉

= N (|p−1p̄1|+ |p0p̄0|+ |p0p̄0|+ |p1p̄−1|)

= 6−1/2 (|p−1p̄1|+ |p1p̄−1|+ 2|p0p̄0|) (71)

Here, the normalization constant has to be 1/
√
6. The single 1S00 wavefunction (only ML =

MS = 0 is allowed) must also be a linear combination of the three Slater determinants which

have MS = 0 and M=0, namely |p1p̄−1|, |p−1p̄1|, and |p0p̄0|,

∣

∣

∣

1S00

〉

= a|p1p̄−1|+ b|p−1p̄1|+ c|p0p̄0|

The coefficients must be chosen so that this function is orthogonal to the Slater determinant
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expansion of the wave functions for the |1D00〉 and |3P00〉 states [Eqs. (71) and (70). Show

that the answer is
∣

∣

∣

1S00

〉

= 3−1/2 (|p1p̄−1|+ |p−1p̄1| − |p0p̄0|)

1. Conversion from definite-M to Cartesian orbitals

It is often convenient to express these wavefunctions in terms of the real (Cartesian) px

and py orbitals rather than the complex p1 and p−1 orbitals. Remember that pz = p0. Since

(note the minus sign for px, this arises because of the phase conventions of the spherical

harmonics)

p1 = −2−1/2 (px + ipy) and p−1 = 2−1/2 (px − ipy) (72)

we can transform all the wavefunctions into representations in terms of the Cartesian spin-

orbitals. For example

∣

∣

∣

1D20

〉

= |p1p̄1| = 2−1 [|pxp̄x| − |pyp̄y|+ i |pxp̄y|+ i |pyp̄x|] (73)

Similarly, we find for the 1D state with ML = −2

∣

∣

∣

1D−2,0

〉

= |p−1p̄−1| = 2−1 [|pxp̄x| − |pyp̄y| − i |pxp̄y| − i |pyp̄x|] (74)

If you take the normalized plus and minus linear combination of these two states, you obtain

∣

∣

∣

1Dx2−y2

〉

= 2−1/2
(∣

∣

∣

1D20

〉

+
∣

∣

∣

1D−2,0

〉)

= 2−1/2 [|pxp̄x| − |pyp̄y|] = 2−1/2[ |xx̄| − |yȳ| ] (75)

and

∣

∣

∣

1Dxy

〉

= −i2−1/2
(∣

∣

∣

1D20

〉

−
∣

∣

∣

1D−2,0

〉)

= 2−1/2 [|pxp̄y|+ |pyp̄x|] = 2−1/2[ |xȳ|+ |yx̄| ] (76)

In the appendix on Slater determinants, I give a formula for the energy of a Slater

determinant with spin-orbitals φ1, φ2, · · · , φN occupied, namely, if

Ψ = |φ1φ2 · · ·φN | (77)

http://www2.chem.umd.edu/groups/alexander/chem691/Slater_determinants.pdf
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then

〈Ψ|H|Ψ〉 =
N
∑

i=1

εφi
+
∑

i

∑

j>i

[

φ2
i |φ2

j

]

− δσi,σj

∑

i

∑

j>i

[φiφj|φjφi] (78)

Here

εφi
= 〈φi|h|φi〉 , (79)

[

φ2
i |φ2

j

]

=
∫ ∫

φ∗

i (1)φi(1)
1

r12
φ∗

j(2)φj(2)dτ1dτ2 (80)

and

[φiφj|φjφi] =
∫ ∫

φ∗

i (1)φj(1)
1

r12
φ∗

j(2)φi(2)dτ1dτ2 (81)

Thus, the energy of the 1Dx2−y2 state is

E(1Dx2−y2) = 2ε1s + 2ε2s + 2ε2p + [1s2|1s2] + [2s2|2s2] + 4[1s2|2s2] + 2[1s2|2p2x] + 2[2s2|2p2x]

−2[1s2s|2s1s]− 2[1s2px|2px1s]− 2[2s2px|2px2s]

+[2p2x|2p2x]− [2px2py|2py2px] (82)

Note that, because an s orbital is spherically symmetric,

[s2|2p2x] = [s2|2p2y] (83)

and

[s2px|2pxs] = [s2py|2pys]

and

[s2px|2pys] = 0

The contribution of the 1s and 2s electrons to the 15 states of the C atom are all identical

(as you might expect, because of the spherical symmetry of the s orbitals. Thus, you could

simplify Eq. (82) to read

E(1Dx2−y2) = EC + [2p2x|2p2x]− [2px2py|2py2px] = EC + [x2|x2]− [xy|yx] (84)

where

EC = 2ε1s + 2ε2s + 2ε2p + [1s2|1s2] + [2s2|2s2] + 4[1s2|2s2] + 2[1s2|2p2x] + 2[2s2|2p2x]
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−2[1s2s|2s1s]− 2[1s2px|2px1s]− 2[2s2px|2px2s] (85)

We see from Eq. (84) that the energy of any of the states of the C atom is equal to a

common value (EC) plus the expectation value of r−1
12 (the electron repulsion) between the

two 2p electrons.

Similarly, from Eq. (76) that the energy of the 1Dxy state is

E(1Dxy) = EC + [x2|y2] + [xy|yx] (86)

Since the energy of the 1D states has to be the same for any value of the Mj projection

(since the Hamiltonian is invariant with respect to your choice of the axis system), all the

Cartesian components of the 1D state will have the same energy. A similar invariance applies

to the 3P states. We can exploit this invariance by equating the energies given in Eqs. (84)

and (86). This gives the relation

[x2|x2]− [xy|yx] = [x2|y2] + [xy|yx] (87)

or

[x2|x2] = [x2|y2] + 2[xy|yx] (88)

This result is reasonable. The coulomb repulsion between two electrons in the same Cartesian

2p will be greater than the repulsion between an electron in a 2px orbital and a 2nd electron

in the 2py orbital.

Problem 20 : Determine the determinantal wavefunctions for the C states with ML = 0

and MS=0 in terms of the Cartesian p spin-orbitals. To obtain these results, it is easiest

to first obtain expressions for the three definite-M Slater determinants with ML = 0 and

MS=0, namely

|p0p̄0| = |pzp̄z|

|p1p̄−1| = −1

2
(|(px + ipy)(p̄x − ip̄y)|) =

1

2
(−|pxp̄x| − |pyp̄y| − i|pyp̄x|+ i|pxp̄y|)

and

|p−1p̄1| = −1

2
(|(px − ipy)(p̄x + ip̄y)|) =

1

2
(−|pxp̄x| − |pyp̄y|+ i|pyp̄x| − i|pxp̄y|)
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Consequently, for example, the wave function for the |3P00〉 state [Eq. (70)] state is

∣

∣

∣

3P00

〉

=
1√
2
(−|p−1p̄1|+ |p1p̄−1|) =

i√
2
(|pxp̄y| − |pyp̄x|) (89)

Then, evaluate the two-electron energy of the two 2p electrons in each of these states in

terms of the basis integrals [x2|x2], [x2|y2], and [xy|yx]. Remember that

[x2|x2] = [y2|y2] = [z2|z2] (90)

[x2|y2] = [x2|z2] = [y2|z2] and so forth (91)

[xy|yx] = [xz|zx] = [yx|xy] and so forth (92)

and, since the electron density associated with electron 1 has different Cartesian reflection

symmetry compared to the electron density associated with electron 2,

[xy|yz] = [xz|yz] = [zy|yx] = 0 and so forth (93)

To check your results, remember that all five components of the 1D state should have the

same energy, so that the expression you obtain for 〈1Dx2−y2| Ĥ |1Dx2−y2〉 should equal the

expression for 〈1D00| Ĥ |1D00〉
Finally, predict the relative spacing between the three valence states of an atom with a

2p2 configuration (such as carbon). The spacing should be similar for Si (...3p2) and also for

O (... 2p4) where there is a double hole (rather than a double occupancy) in the 2p shell, as

well as for S (... 3p4). Use the NIST database to obtain the experimental spacings for C, O,

Si, and S and compare these with your prediction.

2. Reflection Symmetry

Consider a plane containing the z and x axes. Let the operator σ̂xz correspond to a

reflection of all the coordinates in this plane

x→ x, y → −y, z → z

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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so that, for any function f(x, y, z)

σ̂xzf(x, y, z) = f(x,−y, z)

The operator corresponding to a reflection of a N -electron function is just

σ̂xzf(x1, yz, z1, x2, y2, z2, . . . , xN , yN , zN) = f(x1,−yz, z1, x2,−y2, z2, . . . , xN ,−yN , zN )

The Hamiltonian is symmetric with respect to this operation, so that the wave functions for

any state of an atom can be chosen to be eigenfunctions of this operator, either symmetric

(which we label “+”) or antisymmetric (which we label “–”). The Cartesian atomic orbitals

are either positive (symmetric) or negative (antisymmetric). Notably, py is antisymmetric,

while px and pz are symmetric. the We see from the expression given in Eq. (89) that

σ̂xz
∣

∣

∣

3P00

〉

= σ̂xz
i√
2
(|pxp̄y| − |pyp̄x|)

=
i√
2
(−|pxp̄y|+ |pyp̄x|) = −

∣

∣

∣

3P00

〉

so that the |3P00〉 state is “antisymmetric” with respect to reflection.

The definite-m p1 and p−1 one-electron orbitals are neither symmetric nor antisymmetric.

From their definition [Eq. (72)] we see that σxzp1 = −p−1 and σxzp−1 = −p1. In three (or

higher) dimensions rotations and reflections do not commute. The spherical harmonics

are eigenfunctions of rotation around the z axis, and thus will not be eigenfunctions of a

reflection containing the z axis. However, the overall reflection symmetry of the |3P00〉 state
is still −1 even if we express it in terms of the definite-m orbitals [Eq. (70)], because

σ̂xz
∣

∣

∣

3P00

〉

= σ̂xz
i√
2
(−|p−1p̄1|+ |p1p̄−1|)

=
i√
2
(−|p1p̄−1|+ |p−1p̄1|) = −

∣

∣

∣

3P00

〉

Problem 21 : Determine the symmetry for reflection in the xz plane of the |1D00〉 and

|1S00〉 states.

http://en.wikipedia.org/wiki/Rotation_matrix
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L. Spin-Orbit coupling

The electron possesses a magnetic moment by virtue of its orbital motion

~µl = β~l

where β is the Bohr magneton (β = ...), and also by virtue of its spin

~µs = gβ~s

where the so-called “g” factor is nearly 2. The interaction of these two magnetic moments

gives rise to the spin-orbit Hamiltonian

Hso =
∑

i

a~li · ~si (94)

where the sum extends over all the electrons. Here a is a constant which can be evaluated

from the electronic wavefunction. There is also a term (the “spin other-orbit” term) which

arises from the interaction of the spin and electronic orbital magnetic moments on two

distinct electrons, but this is much smaller, so that we will ignore it here.

As with any two angular momenta, you can express the dot product as

~l · ~s = lzsz +
1

2
[l+s− + l−s+] (95)

Problem 22 : Prove Eq. (95).

Suppose that the wave functions for each state are expressed as a sum of Slater deter-

minants. Each spin-orbital is an eigenfunction of both lz and sz (in the latter case the

eigenvalue is ±1/2). Thus the action of
∑

lziszi on a given Slater determinant is a constant

times the same Slater determinant, namely

∑

i

lziszi |φ1φ2...φi...φN | = C |φ1φ2...φi...φN |

Consequently, the matrix of the operator
∑

lziszi is diagonal.
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Also, since the effect of l+s− or l−s+ is to raise ml while simultaneously lowering ms (or

vice versa), the effect of
∑

lziszi on a given Slater determinant is to yield either zero (if the

raising or lowering operators operate on an orbital for which ml or ms is at the top (or

bottom) of their allowable range, or to yield a Slater determinant in which the the value of

the sum of ml +ms is unchanged.

Since the spin-orbit Hamiltonian is a sum of one-electron operators, the matrix elements

of Ĥso vanish between Slater determinants which differ by more than one spin-orbital. In

general, for a determinant |ψ〉 ≡ |φ1φ2...φi...φN | we have

〈ψ|Hso |ψ〉 =
∑

i

lziszi (96)

In other words, only the lzsz term contributes to the diagonal elements of the spin-orbit

operator. Also, because sz is alternately +1/2 and –1/2 for a doubly-filled orbital, only

unfilled shells contribute. For example, consider the six states which correspond to a p1

electron occupancy (the B atom, say). We can label these states p1, p̄1, p0, p̄0, p−1, and p̄−1.

The diagonal matrix of lzsz is (there is only one electron to consider, so there is no sum over

i)









































p1 p̄1 p0 p̄0 p−1 p̄−1

p1 1/2 0 0 0 0 0

p̄1 0 −1/2 0 0 0 0

p0 0 0 0 0 0 0

p̄0 0 0 0 0 0 0

p−1 0 0 0 0 −1/2 0

p̄−1 0 0 0 0 0 1/2









































(97)

As discussed in the paragraph before Eq. (96), only the l+s− or l−s+ terms result in off-

diagonal coupling. there is no coupling between terms for which the sum of ml and ms is

unchanged. Thus, for example

〈p1| Ĥso |p̄0〉 = a/2 〈p1| l+s− + l−s+ |p̄0〉 = a/2〈p1 |p−1〉 = 0
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and

〈p̄1| Ĥso |p0〉 = a/2 〈p̄1| l+s− + l−s+ |p0〉 = a/2〈p̄1 |p̄1〉 = 1/2

Note that in the first case ml+ms is 3/2 for the bra and –1/2 for the ket, so that the matrix

element vanishes. In the second case, ml +ms = 1/2 for the bra and 1/2 for the ket, so that

the matrix element of Ĥso is non-vanishing.

Problem 23 : Evaluate all the other off-diagonal matrix elements of the spin-orbit operator

in the basis of the six p1 states. Add this matrix to the diagonal component [Eq. (97)], then

diagonalize this to get the spin-orbit energies.

Answer








































p1 p̄1 p0 p̄0 p−1 p̄−1

p1 1/2 0 0 0 0 0

p̄1 0 −1/2 −2−1/2 0 0 0

p0 0 −2−1/2 0 0 0 0

p̄0 0 0 0 0 −2−1/2 0

p−1 0 0 0 −2−1/2 −1/2 0

p̄−1 0 0 0 0 0 1/2









































Note that this 6× 6 matrix factors into two uncoupled 3× 3 matrices, which have identical

eigenvalues. This identity between the two 3×3 matrices is easier to see if we rearrange the

states as follows:









































p1 p0 p̄1 p̄−1 p̄0 p−1

p1 1/2 0 0 0 0 0

p0 0 0 −2−1/2 0 0 0

p̄1 0 −2−1/2 −1/2 0 0 0

p̄−1 0 0 0 1/2 0 0

p̄0 0 0 0 0 0 −2−1/2

p−1 0 0 0 0 −2−1/2 −1/2









































Problem 24 One can also write the total electronic orbital angular momentum ( ~J) of the

atom as the vector sum of the total spin angular momentum ~S and the total electronic
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angular momentum ~L. For an atom in a 2P state S = 1/2 and L = 1. Thus, by the rules

that applies to vector addition of two angular momentum in quantum mechanics, we see

that J = 1/2 or 3/2. If you ignore the spin-other-orbit terms, show that

Hso = a
∑

i

~li · ~si ∼= a~L · ~S

Then show that

Ĥso =
a

2

(

Ĵ2 − L̂2 − Ŝ2
)

Use this expression to evaluate the spin-orbit energies and degeneracies of the spin-orbit

states of an atom in a p1 (2P ) and a p2 (3P ) state. The first answer should agree with what

you obtained in Problem 23.

M. Time reversal states

Under the effect of time reversal, the projection of angular momentum states changes

sign. Specifically, if θ is the time-reversal operator, then[4]

θ |jm〉 = (−1)j−m |j −m〉

Or, θ|1m〉 = −(−1)m|1−m〉 and θ|1/2,±1/2〉 = ±|1/2,∓1/2〉, so that

θp0 = −p̄0

θp̄0 = +p0

θp1 = p̄−1

θp̄1 = −p−1

θp−1 = p̄1

and

θp̄−1 = −p1
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Thus, proper time-reversal invariant states are

|0±〉 = 2−1/2 (p0 ± ip̄0)

|3/2±〉 = 2−1/2 (p1 ± ip̄−1)

and

|1/2±〉 = 2−1/2 (p̄1 ∓ ip−1)

Here we designate the linear combinations of the ml = 1 and −1 states by the absolute value

of ω = ml +ms.

[1] Retrieve the data for He I, then scroll down until you find He II (2S1/2) Limit 198 310.669.

This is the ionization potential of He.

[2] The approximation is called Hartree-Fock when there are more than two electrons, so that

electron exchange has to be included. For simplicity, we will designate it as Hartree-Fock even

in the case of He, where there are no exchange terms.

[3] A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, third printing

(Princeton University Press, Princeton, 1974).

[4] D. M. Brink and G. R. Satchler, Angular Momentum, 2nd edition (Clarendon Press, Oxford,

1974) p. 62.
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