The definition of the $A_{2}^{(2)+}$ State Multipoles

Mikhail Lemeshko and Millard H. Alexander

I. GENERALITIES

Following Orr-Ewing and Zare,[1] we define the $A_{2}^{(2)+}(J)$ state multipole as

$$
\begin{equation*}
A_{2}^{(2)+}(J)=2^{-1 / 2}\left[\mathcal{A}_{2}^{(2)}(J)+\mathcal{A}_{-2}^{(2)}(J)\right] \tag{1}
\end{equation*}
$$

where [Eq. (39) of Ref. 1]

$$
\mathcal{A}_{q}^{(k)}(J)=\frac{(-1)^{q} c(k)}{\langle J M| \mathbf{J}^{2}|J M\rangle^{k / 2}} \frac{\left(J\left\|\mathbf{J}^{(k)}\right\| J\right)}{\sqrt{2 k+1}} \rho_{-q}^{(k)}(J)
$$

In addition, the spherical tensor components of the density matrix are defined as [Eq. (21) of Ref. [1]

$$
\rho_{q}^{(k)}(J)=\sum_{M, M^{\prime}}(-1)^{J-M^{\prime}}(2 k+1)^{1 / 2}\left(\begin{array}{ccc}
J & k & J \\
-M & -q & M^{\prime}
\end{array}\right) \rho_{M^{\prime} M}
$$

In a collision experiment, the transition out of intial rotational level $J^{\prime \prime}$ into final rotational level J at scattering angle θ is fully described by the M-resolved (complex) scattering amplitudes $f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}(\theta)$. (We will suppress the scattering angle unless explicitly needed). In terms of these, the $\left\{M, M^{\prime}\right\}^{\text {th }}$ element of the density matrix for final rotational level J at scattering angle θ is

$$
\begin{equation*}
\rho_{M^{\prime} M}=\sum_{M^{\prime \prime}} f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M^{\prime}}^{*} f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M} / \sum_{M^{\prime \prime}, M^{\prime}}\left|f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M^{\prime}}\right|^{2} \tag{2}
\end{equation*}
$$

The denominator is chosen so that

$$
\operatorname{Tr}\left(\rho_{M^{\prime} M}\right)=\sum_{M} \rho_{M M}=1
$$

We assume that the scattering amplitude is dimensionless, so that the degeneracy-averaged $J^{\prime \prime} \rightarrow J$ differential cross section (the sum over all final projection states and average over
all initial projection states of the $J^{\prime \prime} M^{\prime \prime} \rightarrow J M^{\prime}$ differential cross section) is

$$
\begin{equation*}
\frac{d \sigma\left(J^{\prime \prime} \rightarrow J\right)}{d \Omega}=\frac{1}{\left(2 J^{\prime \prime}+1\right) k_{J^{\prime \prime}}^{2}} \sum_{M^{\prime \prime}, M^{\prime}}\left|f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M^{\prime}}\right|^{2} \tag{3}
\end{equation*}
$$

where $k_{J^{\prime \prime}}$ is the initial wavevector. We also note, as one might anticipate, that the density matrix is Hermitian

$$
\begin{equation*}
\rho_{M^{\prime} M}^{*}=\rho_{M M^{\prime}} \tag{4}
\end{equation*}
$$

Note, again, that the rotational density matrix state multipoles of the scattered molecules are functions of the scattering angle.

In the particular case where $k=2$ and $q= \pm 2$ we have

$$
\begin{align*}
\mathcal{A}_{2}^{(2)}(J) & =\frac{(-1)^{2} c(2)}{\langle J M| \mathbf{J}^{2}|J M\rangle^{2 / 2}} \frac{\left(J\left\|\mathbf{J}^{(2)}\right\| J\right)}{\sqrt{5}} \rho_{-2}^{(2)}(J) \\
& =\left[\frac{(2 J-1)(2 J+1)(2 J+3)}{5 J(J+1)}\right]^{1 / 2} \rho_{-2}^{(2)}(J) \\
& =(-1)^{J}\left[\frac{(2 J-1)(2 J+1)(2 J+3)}{J(J+1)}\right]^{1 / 2} \sum_{M M^{\prime}}(-1)^{-M^{\prime}}\left(\begin{array}{ccc}
J & 2 & J \\
-M & 2 & M^{\prime}
\end{array}\right) \rho_{M^{\prime} M} \tag{5}
\end{align*}
$$

Thus, from Eq. (1) and using

$$
\langle J M| \mathbf{J}^{2}|J M\rangle=J(J+1),
$$

and (see p. 231 of Ref. [2])

$$
\left(J\left\|\mathbf{J}^{(2)}\right\| J\right)=\left[\frac{J(J+1)(2 J-1)(2 J+1)(2 J+3)}{6}\right]^{1 / 2}
$$

we have

$$
\begin{align*}
A_{2}^{(2)+}(J)= & (-1)^{J}\left[\frac{(2 J-1)(2 J+1)(2 J+3)}{2 J(J+1)}\right]^{1 / 2} \\
& \times \sum_{M M^{\prime}}(-1)^{-M^{\prime}}\left[\left(\begin{array}{ccc}
J & 2 & J \\
-M & 2 & M^{\prime}
\end{array}\right)+\left(\begin{array}{ccc}
J & 2 & J \\
-M & -2 & M^{\prime}
\end{array}\right)\right] \rho_{M^{\prime} M} \tag{6}
\end{align*}
$$

In fact, the triangular relation contained in the $3 j$ symbols restricts M^{\prime} to a single value
$\left(M^{\prime}=M+2\right.$ or $\left.M^{\prime}=M-2\right)$, so that the double sums can be replaced by

$$
\begin{aligned}
A_{2}^{(2)+}(J)= & (-1)^{J}\left[\frac{(2 J-1)(2 J+1)(2 J+3)}{2 J(J+1)}\right]^{1 / 2}\left[\sum_{M=-J+2}^{J}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & 2 & M-2
\end{array}\right) \rho_{M, M-2}\right. \\
& \left.+\sum_{M=-J}^{J-2}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & -2 & M+2
\end{array}\right) \rho_{M, M+2}\right]
\end{aligned}
$$

We can define $M^{\prime}=M-2$ in the first summation, then replace M^{\prime} by M, and use the known symmetries of the $3 j$ symbols to get

$$
\begin{aligned}
& \sum_{M=-J+2}^{J}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & 2 & M-2
\end{array}\right) \rho_{M, M-2}=\sum_{M^{\prime}=-J}^{J-2}(-1)^{-M^{\prime}-2}\left(\begin{array}{ccc}
J & 2 & J \\
-M^{\prime}-2 & 2 & M^{\prime}
\end{array}\right) \rho_{M^{\prime}+2, M^{\prime}} \\
& =\sum_{M=-J}^{J-2}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M-2 & 2 & M
\end{array}\right) \rho_{M+2, M} \\
& =\sum_{M=-J}^{J-2}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & -2 & M+2
\end{array}\right) \rho_{M+2, M}
\end{aligned}
$$

We use this result, and the hermiticity of the density matrix [Eq. (4)], to simplify Eq. (6) to

$$
\begin{align*}
A_{2}^{(2)+}(J)= & (-1)^{J}\left[\frac{(2 J-1)(2 J+1)(2 J+3)}{2 J(J+1)}\right]^{1 / 2} \\
& \times \sum_{M=-J}^{J-2}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & -2 & M+2
\end{array}\right)\left(\rho_{M+2, M}+\rho_{M, M+2}\right) \\
= & (-1)^{J}\left[\frac{2(2 J-1)(2 J+1)(2 J+3)}{J(J+1)}\right]^{1 / 2} \\
& \times \sum_{M=-J}^{J-2}(-1)^{-M}\left(\begin{array}{ccc}
J & 2 & J \\
-M & -2 & M+2
\end{array}\right) \mathcal{R}\left(\rho_{M+2, M}\right) \tag{7}
\end{align*}
$$

where \mathcal{R} designates the real part of a complex number. From Eq. (2) one can show that

$$
\begin{align*}
& \mathcal{R}\left(\rho_{M+2, M}\right)=\sum_{M^{\prime \prime}}\left[\mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right)\right.\left.\mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M+2}\right)+\mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right) \mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M+2}\right)\right] \\
& / \sum_{M^{\prime \prime}, M}\left|f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right|^{2} \\
&=\sum_{M^{\prime \prime}}\left[\mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right) \mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M+2}\right)+\mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right) \mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M+2}\right)\right] \\
& / \sum_{M^{\prime \prime}, M}\left[\mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right) \mathcal{R}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right)+\mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right) \mathcal{I}\left(f_{J^{\prime \prime} M^{\prime \prime} \rightarrow J M}\right)\right] \tag{8}
\end{align*}
$$

[1] A. J. Orr-Ewing and R. N. Zare, Annu. Rev. Phys. Chem. 45, 315-66 (1994).
[2] R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics (Wiley, New York, 1988).

