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I. GENERALITIES

Following Orr-Ewing and Zare,[1] we define the Ag2)+(J ) state multipole as
AP =27 AP () + ALY | M

where [Eq. (39) of Ref. 1]

(=D)%c(k)  (JIDNT) @

AP(T) = ’
o (/) UMM kil

(/)

In addition, the spherical tensor components of the density matrix are defined as [Eq. (21)
of Ref. [1]

/ J k J
A ) =D (1) M 2k )Y prrrni
M, M’ —-M —q M/

In a collision experiment, the transition out of intial rotational level J” into final rota-
tional level J at scattering angle 6 is fully described by the M-resolved (complex) scattering
amplitudes fyrym s ya(0). (We will suppress the scattering angle unless explicitly needed).
In terms of these, the {M, M’} element of the density matrix for final rotational level .J

at scattering angle 6 is
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The denominator is chosen so that
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We assume that the scattering amplitude is dimensionless, so that the degeneracy-averaged

J" — J differential cross section (the sum over all final projection states and average over



all initial projection states of the J"M"” — JM" differential cross section) is
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where k£~ is the initial wavevector. We also note, as one might anticipate, that the density

matrix is Hermitian

Prrv = PMM (4)

Note, again, that the rotational density matrix state multipoles of the scattered molecules
are functions of the scattering angle.

In the particular case where k = 2 and ¢ = +2 we have
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Thus, from Eq. (1) and using
(JM|J?|JM) = J(J +1),
and (see p. 231 of Ref. [2])
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In fact, the triangular relation contained in the 37 symbols restricts M’ to a single value



(M'= M+ 2 or M"= M — 2), so that the double sums can be replaced by
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We can define M’ = M — 2 in the first summation, then replace M’ by M, and use the

known symmetries of the 35 symbols to get
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We use this result, and the hermiticity of the density matrix [Eq. (4)], to simplify Eq. (6) to

AP () = (1) [(2J —1)(2J +1)(2J + 3)} 1/2
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where R designates the real part of a complex number. From Eq. (2) one can show that
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