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The definition of the A
(2)+
2 State Multipoles

Mikhail Lemeshko and Millard H. Alexander

I. GENERALITIES

Following Orr-Ewing and Zare,[1] we define the A
(2)+
2 (J) state multipole as

A
(2)+
2 (J) = 2−1/2

[

A
(2)
2 (J) +A

(2)
−2(J)

]

, (1)

where [Eq. (39) of Ref. 1]

A
(k)
q (J) =

(−1)qc(k)

〈JM | J2 |JM〉k/2
(J ‖ J

(k) ‖ J)√
2k + 1

ρ
(k)
−q (J)

In addition, the spherical tensor components of the density matrix are defined as [Eq. (21)

of Ref. [1]

ρ(k)q (J) =
∑

M,M ′

(−1)J−M ′

(2k + 1)1/2





J k J

−M −q M ′



 ρM ′M

In a collision experiment, the transition out of intial rotational level J ′′ into final rota-

tional level J at scattering angle θ is fully described by the M-resolved (complex) scattering

amplitudes fJ ′′M ′′→JM(θ). (We will suppress the scattering angle unless explicitly needed).

In terms of these, the {M,M ′}th element of the density matrix for final rotational level J

at scattering angle θ is

ρM ′M =
∑

M ′′

f ∗

J ′′M ′′→JM ′fJ ′′M ′′→JM

/

∑

M ′′,M ′

|fJ ′′M ′′→JM ′|2 (2)

The denominator is chosen so that

Tr (ρM ′M) =
∑

M

ρMM = 1

We assume that the scattering amplitude is dimensionless, so that the degeneracy-averaged

J ′′ → J differential cross section (the sum over all final projection states and average over
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all initial projection states of the J ′′M ′′ → JM ′ differential cross section) is

dσ(J ′′ → J)

dΩ
=

1

(2J ′′ + 1)k2
J ′′

∑

M ′′,M ′

|fJ ′′M ′′→JM ′|2 (3)

where kJ ′′ is the initial wavevector. We also note, as one might anticipate, that the density

matrix is Hermitian

ρ∗M ′M = ρMM ′ (4)

Note, again, that the rotational density matrix state multipoles of the scattered molecules

are functions of the scattering angle.

In the particular case where k = 2 and q = ±2 we have

A
(2)
2 (J) =

(−1)2c(2)

〈JM | J2 |JM〉2/2
(J ‖ J

(2) ‖ J)√
5

ρ
(2)
−2(J)

=

[

(2J − 1)(2J + 1)(2J + 3)

5J(J + 1)

]1/2

ρ
(2)
−2(J)

= (−1)J
[

(2J − 1)(2J + 1)(2J + 3)

J(J + 1)

]1/2
∑

MM ′

(−1)−M ′





J 2 J

−M 2 M ′



 ρM ′M (5)

Thus, from Eq. (1) and using

〈JM | J2 |JM〉 = J(J + 1) ,

and (see p. 231 of Ref. [2])

(J ‖ J
(2) ‖ J) =

[

J(J + 1)(2J − 1)(2J + 1)(2J + 3)

6

]1/2

we have

A
(2)+
2 (J) = (−1)J

[

(2J − 1)(2J + 1)(2J + 3)

2J(J + 1)

]1/2

×
∑

MM ′

(−1)−M ′









J 2 J

−M 2 M ′



+





J 2 J

−M −2 M ′







 ρM ′M (6)

In fact, the triangular relation contained in the 3j symbols restricts M ′ to a single value
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(M ′ = M + 2 or M ′ = M − 2), so that the double sums can be replaced by

A
(2)+
2 (J) = (−1)J

[

(2J − 1)(2J + 1)(2J + 3)

2J(J + 1)

]1/2




J
∑

M=−J+2

(−1)−M





J 2 J

−M 2 M − 2



 ρM,M−2

+

J−2
∑

M=−J

(−1)−M





J 2 J

−M −2 M + 2



 ρM,M+2





We can define M ′ = M − 2 in the first summation, then replace M ′ by M , and use the

known symmetries of the 3j symbols to get

J
∑

M=−J+2

(−1)−M





J 2 J

−M 2 M − 2



 ρM,M−2 =

J−2
∑

M ′=−J

(−1)−M ′
−2





J 2 J

−M ′ − 2 2 M ′



 ρM ′+2,M ′

=

J−2
∑

M=−J

(−1)−M





J 2 J

−M − 2 2 M



 ρM+2,M

=

J−2
∑

M=−J

(−1)−M





J 2 J

−M −2 M + 2



 ρM+2,M

We use this result, and the hermiticity of the density matrix [Eq. (4)], to simplify Eq. (6) to

A
(2)+
2 (J) = (−1)J

[

(2J − 1)(2J + 1)(2J + 3)

2J(J + 1)

]1/2

×
J−2
∑

M=−J

(−1)−M





J 2 J

−M −2 M + 2



 (ρM+2,M + ρM,M+2)

= (−1)J
[

2(2J − 1)(2J + 1)(2J + 3)

J(J + 1)

]1/2

×
J−2
∑

M=−J

(−1)−M





J 2 J

−M −2 M + 2



R (ρM+2,M) (7)

where R designates the real part of a complex number. From Eq. (2) one can show that

R (ρM+2,M) =
∑

M ′′ [R (fJ ′′M ′′→JM)R (fJ ′′M ′′→JM+2) + I (fJ ′′M ′′→JM) I (fJ ′′M ′′→JM+2)]

/
∑

M ′′,M |fJ ′′M ′′→JM |2

=
∑

M ′′ [R (fJ ′′M ′′→JM)R (fJ ′′M ′′→JM+2) + I (fJ ′′M ′′→JM) I (fJ ′′M ′′→JM+2)]

/
∑

M ′′,M [R (fJ ′′M ′′→JM)R (fJ ′′M ′′→JM) + I (fJ ′′M ′′→JM)I (fJ ′′M ′′→JM)] (8)
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