Tableau method for determining atomic terms illustrated for a $\boldsymbol{p}^{\mathbf{2}}$ electronic configuration

As we have discussed in Chap. 2, if we have two electrons in any one of three $2 p$ orbitals and two possible spin states, we have 15 different possibilities. We can create a tableau (fancy word for a table), in which these possible electron assignments are assigned to boxes corresponding to the projection of the total angular momentum

$$
\mathrm{M}_{\mathrm{L}}=m_{l 1}+m_{l 2}
$$

and to the projection of the total spin

$$
\mathbf{M}_{S}=m_{s 1}+m_{s 2}
$$

Since $-1 \leq m_{l} \leq+1$, and $-1 / 2 \leq m_{s} \leq+1 / 2$ (both in integer steps), M_{L} and M_{S} are limited to $-2 \leq \mathrm{M}_{\mathrm{L}} \leq+2$ and $-1 \leq \mathrm{M}_{\mathrm{S}} \leq+1$.

Each box in the tableau contains all possible spin-orbital product wavefunctions that correspond to the values of M_{L} and M_{S} for the particular box. Allow only one entry for each combination; ordering does NOT create a different entry. (This is a consequence of indistiguishability). In additional entries must be consistent with the Pauli exclusion principle in that no spin-orbital can be repeated in a particular product.

For a p^{2} electronic configuration the tableau is (bars designate $m_{s}=-1 / 2$)

$\mathrm{M}_{\mathrm{s}} \backslash \mathrm{M}_{\mathrm{L}}$	2	1	0	-1	-2
1		$\mathrm{p}_{1} \mathrm{p}_{0}$	$\mathrm{p}_{1} \mathrm{p}_{-1}$	$\mathrm{p}_{-1} \mathrm{p}_{0}$	
0	$\mathrm{p}_{1} \overline{\mathrm{p}}_{1}$	$\mathrm{p}_{1} \overline{\mathrm{p}}_{0} \quad \overline{\mathrm{p}}_{1} \mathrm{p}_{0}$	$\mathrm{p}_{1} \overline{\mathrm{p}}_{-1} \quad \mathrm{p}_{-1} \overline{\mathrm{p}}_{1} \quad \mathrm{p}_{0} \overline{\mathrm{p}}_{0}$	$\mathrm{p}_{-1} \overline{\mathrm{p}}_{0} \quad \overline{\mathrm{p}}_{-1} \mathrm{p}_{0}$	$\mathrm{p}_{-1} \overline{\mathrm{p}}_{-1}$
-1		$\overline{\mathrm{p}}_{1} \overline{\mathrm{p}}_{0}$	$\overline{\mathrm{p}}_{1} \overline{\mathrm{p}}_{-1}$	$\overline{\mathrm{p}}_{-1} \overline{\mathrm{p}}_{0}$	

1. Select the highest value of M_{s}. Here this is 1 . There are entries in the $M_{s}=1$ box, so there must exist an $S=1$ (triplet) state. The highest value of M_{L} in the $\mathrm{M}_{\mathrm{S}}=1$ row is 1 . Thus, there is an $S=1$ (triplet) state with $\mathrm{L}=1$. This is called a P state (because $l=1$ for a single electron is called a p state). In fact it's a triplet P state, denoted ${ }^{3} P$. The value of $2 \mathrm{~S}+1$ (the "multiplicity") is given as a leading superscript.

There will be nine components of this state, corresponding to the possible values of $\mathrm{M}_{\mathrm{L}}(+1$, 0 , and -1$)$ and $\mathrm{M}_{\mathrm{S}}(+1,0$, and -1$)$. Eliminate one product wavefunction (it doesn't matter which one) from each corresponding box
2. We are left with

$\mathrm{M}_{\mathrm{s}} \backslash \mathrm{M}_{\mathrm{L}}$	2	1	0	-1	-2
1					
0	$\mathrm{p}_{1} \overline{\mathrm{p}}_{1}$	$\overline{\mathrm{p}}_{1} \mathrm{p}_{0}$	$\mathrm{p}_{-1} \overline{\mathrm{p}}_{1} \quad \mathrm{p}_{0} \overline{\mathrm{p}}_{0}$	$\overline{\mathrm{p}}_{-1} \mathrm{p}_{0}$	$\mathrm{p}_{-1} \overline{\mathrm{p}}_{-1}$
-1					

3. Only $\mathrm{M}_{\mathrm{S}}=0$ entries are left, thus all the remaining states are singlets. Select the highest value
of M_{L}. Here this is 2 , thus there must be a $L=2$ state (D). Thus the state is a ${ }^{1} \mathrm{D}$. There will be five components of this state. Eliminate one from each appropriate box.
4. We are then leftwith

$\mathrm{M}_{\mathrm{s}} \backslash \mathrm{M}_{\mathrm{L}}$	2	1	0	-1	-2
1					
0			$\mathrm{p}_{0} \overline{\mathrm{p}}_{0}$		
-1					

5. There is only one remaining component with $\mathrm{M}_{\mathrm{S}}=0$ and $\mathrm{M}_{\mathrm{L}}=0$. Thus, the remaining state is a ${ }^{1} S$.

In conclusion, for an atom with a p^{2} electron configuration (e.g. $\mathrm{C}, \mathrm{N}^{+}, \mathrm{Si} . .$.) the allowed electronic terms (states) are ${ }^{3} P,{ }^{1} D$, and ${ }^{1} S$. Because the Hamiltonian is independent of the orientation of the z-axes (in both coordinate space and spin space), the 9 different components of the ${ }^{3} P$ state are all degenerate, as are the 5 components of the ${ }^{1} D$ state. The ${ }^{1} S$ state has only one component, and hence is non-degenerate.

