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I. HELP: TO OBTAIN INFORMATION ABOUT ANY INSTRUCTION IN MATLAB

help ’instruction’ % ’instruction’ can be any command

or hit ? on the matlab menu bar. Then go to MATLAB/Getting Started

or go to the MATLAB Academy.

II. SCRIPTING

Example: f = A cos(ωt)

https://matlabacademy.mathworks.com/R2015b/
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A=30; % specify parameters, semicolon silences the return

%percentage sign allows comment to follow

ome=2.5; % you specify the variable name

t=0.1;

f=A*cos(ome*t) % built-in function ’cos(x)’. no semicolon so the result is printed out

A=30;ome=2.5;t=0.1;f=A*cos(ome*t) % one line equivalent

Problem 1

The wavefunction for the ground state of the harmonic oscillator with reduced mass µ and force constant k is

ψ0(x) =
(α

π

)1/4

e−αx2/2

where α =
√
kµ. For the H2 molecule µ = 918 (atomic units) and ω = 0.02 (atomic units). Calculate k and α

given that ω =
√

k/µ. The value of re for H2 is 1.4 bohr (atomic units).

Defining x = r − re write (and save) a Matlab script to determine ψ0(r = 1.5).

III. LOOPS, DETERMINE AN ARRAY OF VALUES, PLOT THE RESULT

for it = 1:100 % ’it’ is counter, following fortran convention names of integers start

% with i,j,k,l,m,n but this is not necessary

t = 0.05*it; % determine successive time intervals; note looped commands are indented

f(it)=A*cos(ome*t); % store result as a vector f

end % terminate loop

size(f) % check size of the vector (it should be 100 x 1 (100 rows 1 column)

% plot result

plot(f) % just plot result, with integer abscissa

plot(0.05*[1:100],f,’linewidth’,1) % plot result f vs t

%change width of line from 0.5 px (default) to 1

xlabel(’time / s’) % label x axis

ylabel(’function’) % label y axis
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set(gca,’fontsize’,14) % increase size of lables

help plot % find out about the many plotting options

Problem 2

Write a loop to determine the H2 v=0 vibrational wavefunction at r=[0.8:0.02:1.9]. Call this array psi values.

Then plot these points.

IV. WORK WITH FUNCTIONS SYMBOLICALLY

clear A t ome % clear values of variables

clear all % clear all variables from workspace

syms A t ome % declare A, T, omega as symbolic variables

f=A*cos(ome*t) % redefine f in terms of symbolic variables

diff(f,t) % derivative of f with respect to t

diff(f,A) % derivative of f with respect to A

int(f,t) % indefinite integral

int(f,t,pi/4,2*pi) % definite integral

subs(int(f,t,pi/4,2*pi),[A ome],[30 1.2]) % give a definite value to omega

% in the result of the integration

single(ans) % numerical value for answer

g=exp(A*t)/(1+t^2) % more complicated expression

pretty(g) % display the expression for f more clearly

ff=subs(f,[A ome],[30 2.5]) % give definite values to two of the parameters in f(A,ome,t)

ezplot(ff,[-2 4]) % plot the result for -2 <= t <= 4
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Problem 3

Declare the symbolic variables α and x, then define ψ0(x, α) as a symbolic function psi0. NB The symbolic

variable α should be defined as positive, namely

syms alpha x

assume(alpha,’positive’) % note the apostrophes

Show that ψ0(x) is normalized

int(psi0*psi0,-inf,inf)

The wavefunction for v=2 is

ψ2 =
(α

π

)

1/4 1√
2
(2αx2 − 1)e−αx2/2

Define a symbolic function psi2 for ψ2(x) and show that 〈2|2〉 = 1 and 〈2|0〉 = 0

The harmonic oscillator Hamiltonian is Ĥ(x) = T̂ + V̂ = − 1

2µ
d2

dx2 + 1

2
kx2. Use your symbolic expression for

ψ0(x) to show that

〈0|V̂ |0〉 = ω/4

and

〈0|T̂ |0〉 = ω/4

Hint Remember that α =
√
kµ = ωµ.

V. FUNCTIONS

A. Anonymous functions

g=@(t)30*cos(2.5*t) %the ’@(t)’ denotes a function of the variable t

ezplot(g,-2,4) %use ezplot to plot the function

fminbnd(g,1,2) % find the minimum of g in the range 1 <= t <= 2

gg=matlabFunction(ff) % convert any symbolic expression ff to a function

% note upper case F

int(ff,0,pi) % integrate ff from 0 to pi

integral(gg,0,pi) % numerically integrate the anonymous function from 0 to pi
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VI. MINIMUM OF DISCRETE DATA

tt=[1 1.2 1.4 1.6 1.8] % five values of t

gx=g(tt) % 30 cos(2.5 t) at these five values

plot(tt,gx,’o-’) % plot the four values, note the ’o-’ commands a line-point plot

cc=polyfit(tt,gx,3) % fit these points with a cubic polynomial

rr=roots(polyder(cc)) % find the roots of the derivative of cc, this defines the minima

% note that only one value [rr(2)] lies in the range 1 < t < 1.8

polyval(cc,rr(2)) % determine the value of the function at this value

Problem 4

As a further example you can define an anonymous function of two variables for the wavefunction of the

harmonic oscillator

ppsi0=@(alpha,xx)(alpha/pi)^(1/4)*exp(-alpha*xx.*xx/2)

% note that i’m using a different name for the independent

% variable and for the function, so as not to redefine the symbolic variables psi0 and x

% also note that i’m making the definition so that the variable can be a vector in which case

% use ’.*’ invoking element-by-element multiplication (see the Linear Algebra section below).

Then you can define a vector of independent variables, and obtain at once the values of ψ0(x),

t=[0:0.01:1];

plot(t,ppsi0(20,t)) % no FOR loop needed.

% Also, the name of the independent variable doesn’t have to be xx

Define, similarly, an anonymous function of two variables (α and x) for the v=2 wavefunction. Call this function

psi2(alpha,xx). Obtain a vector of values of psi2, and plot. Using the Matlab function ginput(1), obtain an

estimate of the root of this function. Then, fit 4 points (call these xxx) around the root.

xxx=[0 .1 .2 .3] % guess that these straddle the root

cc=polyfit(xxx,psi2(alpha,xxx),3);

rr=roots(cc) % there will be several roots, pick the one that’s physically reasonable

% this should be close to the value you got by graphical interpolation
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VII. LINEAR ALGEBRA

vec=[.1 .2 .4 ] % define a row vector of 3 elements

vec’ % the prime is the transpose, converting this to a column vector

vec*vec’ % the dot product

vec’*vec % the outer product

mat=[.1 .2 .3; .4 .2 -.3;.5 1 0] % a 3x3 matrix, the semicolon indicates the end of a line

mat(:,1) % outputs the first column of the matrix as a column vector

mat(2,:) % outputs the 2nd row of the matrix as a row vector

mat*vec % a matrix-vector product (the result is a column vector)

mati=inv(mat) % the inverse of a matrix

mati*mat % the product of mat times its inverse; this is equal to the unit matrix

identity(3) % the 3x3 unit matrix

mats=mat+mat’ % create a symmetric matrix

eig(mats) % the eigenvalues of this matrix

[evec eval]=eig(mat) % eigenvectors and eigenvalues of mats

diag([.1 .2 .3 .4]) % create a diagonal matrix with [.1 .2 .3 .4] along the diagonal

Matlab has an important property, that allows element-by-element multiplication or division of two vectors (or

matrices) of the same size

vecm=vec.*vec; (or vecd=vec./vec;) % note the ’.’ which precedes the

% multiplication or division
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Problem 5

Define the symbolic variables cs, sn, H11, H12 and H22. where cs ≡ cos(θ) and sn ≡ sin(θ) Define the

matrices

C=[cs sn;-sn cs]

H=[H11 H12;H12 H22]

E = C.’*H*C % diagonalize H

E = simplify(E) % simplify E

Then, determine the value of θ so that the off-diagonal matrix element of the C matrix vanishes. With this value

of θ, determine the values of the diagonal matrix elements E11 and E22.

Note: Here, use the symbolic capability of Matlab to help you solve the problem. You’ll have to do some

simple algebra on your own at the end, to finish the problem.
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