Matlab Instruction Primer; Chem 691, Spring 2016
This version dated February 10, 2017

CONTENTS

I. Help: To obtain information about any instruction in Matlab 1
II. Scripting 1
III. Loops, determine an array of values, plot the result 2
IV. Work with functions symbolically 3
V. Functions 4
A. Anonymous functions 4
VI. minimum of discrete data 5
VII. Linear Algebra 6

I. HELP: TO OBTAIN INFORMATION ABOUT ANY INSTRUCTION IN MATLAB

```
help 'instruction' % 'instruction' can be any command
```

or hit ? on the matlab menu bar. Then go to MATLAB/Getting Started or go to the MATLAB Academy.

II. SCRIPTING

Example: $f=A \cos (\omega t)$

```
A=30; % specify parameters, semicolon silences the return
    %percentage sign allows comment to follow
ome=2.5; % you specify the variable name
t=0.1;
f=A*\operatorname{cos(ome*t) % built-in function 'cos(x)'. no semicolon so the result is printed out}
A=30;ome=2.5;t=0.1;f=A*\operatorname{cos}(ome*t) % one line equivalent
```


Problem 1

The wavefunction for the ground state of the harmonic oscillator with reduced mass μ and force constant k is

$$
\psi_{0}(x)=\left(\frac{\alpha}{\pi}\right)^{1 / 4} e^{-\alpha x^{2} / 2}
$$

where $\alpha=\sqrt{k \mu}$. For the H_{2} molecule $\mu=918$ (atomic units) and $\omega=0.02$ (atomic units). Calculate k and α given that $\omega=\sqrt{k / \mu}$. The value of r_{e} for H_{2} is 1.4 bohr (atomic units).

Defining $x=r-r_{e}$ write (and save) a Matlab script to determine $\psi_{0}(r=1.5)$.

III. LOOPS, DETERMINE AN ARRAY OF VALUES, PLOT THE RESULT

```
for it = 1:100 % 'it' is counter, following fortran convention names of integers start
        % with i,j,k,l,m,n but this is not necessary
        t = 0.05*it; % determine successive time intervals; note looped commands are indented
        f(it)=A*\operatorname{cos(ome*t); % store result as a vector f}
    end % terminate loop
    size(f) % check size of the vector (it should be 100 x 1 (100 rows 1 column)
% plot result
    plot(f) % just plot result, with integer abscissa
    plot(0.05*[1:100],f,'linewidth',1) % plot result f vs t
    %change width of line from 0.5 px (default) to 1
    xlabel('time / s') % label x axis
    ylabel('function') % label y axis
```

```
set(gca,'fontsize',14) % increase size of lables
help plot % find out about the many plotting options
```


Problem 2

Write a loop to determine the $\mathrm{H}_{2} \mathrm{v}=0$ vibrational wavefunction at $\mathrm{r}=[0.8: 0.02: 1.9]$. Call this array psi_values. Then plot these points.

IV. WORK WITH FUNCTIONS SYMBOLICALLY

```
clear A t ome % clear values of variables
clear all % clear all variables from workspace
syms A t ome % declare A, T, omega as symbolic variables
f=A*\operatorname{cos(ome*t) % redefine f in terms of symbolic variables}
diff(f,t) % derivative of f with respect to t
diff(f,A) % derivative of f with respect to A
int(f,t) % indefinite integral
int(f,t,pi/4,2*pi) % definite integral
subs(int(f,t,pi/4,2*pi),[A ome],[30 1.2]) % give a definite value to omega
                                    % in the result of the integration
single(ans) % numerical value for answer
g=exp(A*t)/(1+t^2) % more complicated expression
pretty(g) % display the expression for f more clearly
ff=subs(f,[A ome],[30 2.5]) % give definite values to two of the parameters in f(A,ome,t)
ezplot(ff,[-2 4]) % plot the result for -2 <= t <= 4
```


Problem 3

Declare the symbolic variables α and x, then define $\psi_{0}(x, \alpha)$ as a symbolic function psi0. NB The symbolic variable α should be defined as positive, namely

```
syms alpha x
assume(alpha,'positive') % note the apostrophes
```

Show that $\psi_{0}(x)$ is normalized

```
int(psi0*psi0,-inf,inf)
```

The wavefunction for $v=2$ is

$$
\psi_{2}=\left(\frac{\alpha}{\pi}\right)^{1 / 4} \frac{1}{\sqrt{2}}\left(2 \alpha x^{2}-1\right) e^{-\alpha x^{2} / 2}
$$

Define a symbolic function psi2 for $\psi_{2}(x)$ and show that $\langle 2 \mid 2\rangle=1$ and $\langle 2 \mid 0\rangle=0$
The harmonic oscillator Hamiltonian is $\hat{H}(x)=\hat{T}+\hat{V}=-\frac{1}{2 \mu} \frac{d^{2}}{d x^{2}}+\frac{1}{2} k x^{2}$. Use your symbolic expression for $\psi_{0}(x)$ to show that

$$
\langle 0| \hat{V}|0\rangle=\omega / 4
$$

and

$$
\langle 0| \hat{T}|0\rangle=\omega / 4
$$

Hint Remember that $\alpha=\sqrt{k \mu}=\omega \mu$.

V. FUNCTIONS

A. Anonymous functions

```
g=@(t)30*\operatorname{cos(2.5*t) %the '@(t)' denotes a function of the variable t}
ezplot(g,-2,4) %use ezplot to plot the function
fminbnd(g,1,2) % find the minimum of g in the range 1<= t <= 2
gg=matlabFunction(ff) % convert any symbolic expression ff to a function
    % note upper case F
int(ff,0,pi) % integrate ff from 0 to pi
integral(gg,0,pi) % numerically integrate the anonymous function from 0 to pi
```


VI. MINIMUM OF DISCRETE DATA

```
tt=[llllllll
gx=g(tt) % 30 cos(2.5 t) at these five values
plot(tt,gx,'o-') % plot the four values, note the 'o-' commands a line-point plot
cc=polyfit(tt,gx,3) % fit these points with a cubic polynomial
rr=roots(polyder(cc)) % find the roots of the derivative of cc, this defines the minima
    % note that only one value [rr(2)] lies in the range 1 < t < 1.8
polyval(cc,rr(2)) % determine the value of the function at this value
```


Problem 4

As a further example you can define an anonymous function of two variables for the wavefunction of the harmonic oscillator

```
ppsi0=@(alpha,xx)(alpha/pi)^(1/4)*exp(-alpha*xx.*xx/2)
    % note that i'm using a different name for the independent
    % variable and for the function, so as not to redefine the symbolic variables psiO and x
    % also note that i'm making the definition so that the variable can be a vector in which case
    % use '.*' invoking element-by-element multiplication (see the Linear Algebra section below).
```

Then you can define a vector of independent variables, and obtain at once the values of $\psi_{0}(x)$,
$t=[0: 0.01: 1]$;
plot(t,ppsiO $(20, t)$) \% no FOR loop needed.
\% Also, the name of the independent variable doesn't have to be xx

Define, similarly, an anonymous function of two variables (α and x) for the $\mathrm{v}=2$ wavefunction. Call this function psi2(alpha, xx). Obtain a vector of values of psi2, and plot. Using the Matlab function ginput(1), obtain an estimate of the root of this function. Then, fit 4 points (call these xxx) around the root.

```
xxx=[0.1 .2 . 3] % guess that these straddle the root
cc=polyfit(xxx,psi2(alpha,xxx),3);
rr=roots(cc) % there will be several roots, pick the one that's physically reasonable
% this should be close to the value you got by graphical interpolation
```


VII. LINEAR ALGEBRA

```
vec=[.1 . 2 .4 ] % define a row vector of 3 elements
vec' % the prime is the transpose, converting this to a column vector
vec*vec, % the dot product
vec'*vec % the outer product
mat=[.1 .2 . 3; .4 .2 -. 3;.5 1 0] % a 3x3 matrix, the semicolon indicates the end of a line
mat(:,1) % outputs the first column of the matrix as a column vector
mat(2,:) % outputs the 2nd row of the matrix as a row vector
mat*vec % a matrix-vector product (the result is a column vector)
mati=inv(mat) % the inverse of a matrix
mati*mat % the product of mat times its inverse; this is equal to the unit matrix
identity(3) % the 3x3 unit matrix
mats=mat+mat, % create a symmetric matrix
eig(mats) % the eigenvalues of this matrix
[evec eval]=eig(mat) % eigenvectors and eigenvalues of mats
diag([.1 .2 .3 .4]) % create a diagonal matrix with [.1 .2 .3 .4] along the diagonal
```

Matlab has an important property, that allows element-by-element multiplication or division of two vectors (or matrices) of the same size
vecm=vec.*vec; (or vecd=vec./vec;) \% note the '.' which precedes the
\% multiplication or division

Problem 5

Define the symbolic variables cs, sn, H11, H12 and H22. where $c s \equiv \cos (\theta)$ and $s n \equiv \sin (\theta)$ Define the matrices
$\mathrm{C}=[\mathrm{cs} \mathrm{sn} ;-\mathrm{sn} \mathrm{cs}$]
$\mathrm{H}=[\mathrm{H} 11 \mathrm{H} 12 ; \mathrm{H} 12 \mathrm{H} 22]$
$\mathrm{E}=\mathrm{C} .{ }^{2} * \mathrm{H} * \mathrm{C} \quad \%$ diagonalize H
$\mathrm{E}=\operatorname{simplify}(\mathrm{E}) \quad \%$ simplify E
Then, determine the value of θ so that the off-diagonal matrix element of the C matrix vanishes. With this value of θ, determine the values of the diagonal matrix elements E_{11} and E_{22}.

Note: Here, use the symbolic capability of Matlab to help you solve the problem. You'll have to do some simple algebra on your own at the end, to finish the problem.

