Matlab Instruction Primer; Chem 691, Spring 2016

This version dated February 10, 2017

CONTENTS

I. Help: To obtain information about any instruction in Matlab	1
II. Scripting	1
III. Loops, determine an array of values, plot the result	2
IV. Work with functions symbolically	3
V. Functions	4
A. Anonymous functions	4
VI. minimum of discrete data	5
VII. Linear Algebra	6

I. HELP: TO OBTAIN INFORMATION ABOUT ANY INSTRUCTION IN MATLAB

help 'instruction' % 'instruction' can be any command

or hit? on the matlab menu bar. Then go to MATLAB/Getting Started or go to the MATLAB Academy.

II. SCRIPTING

Example: $f = A\cos(\omega t)$

A=30;	% specify parameters, semicolon silences the return		
	%percentage sign allows comment to follow		
ome=2.5;	% you specify the variable name		
t=0.1;			
f=A*cos(ome*t)	% built-in function 'cos(x)'. no semicolon so the result is printed out		
A=30;ome=2.5;t=0.1;f=A*cos(ome*t) % one line equivalent			

Problem 1

The wavefunction for the ground state of the harmonic oscillator with reduced mass μ and force constant k is

$$\psi_0(x) = \left(rac{lpha}{\pi}
ight)^{1/4} e^{-lpha x^2/2}$$

where $\alpha = \sqrt{k\mu}$. For the H₂ molecule $\mu = 918$ (atomic units) and $\omega = 0.02$ (atomic units). Calculate k and α given that $\omega = \sqrt{k/\mu}$. The value of r_e for H₂ is 1.4 bohr (atomic units).

Defining $x = r - r_e$ write (and save) a Matlab script to determine $\psi_0(r = 1.5)$.

III. LOOPS, DETERMINE AN ARRAY OF VALUES, PLOT THE RESULT

for it = 1:100	% 'it' is counter, following fortran convention names of integers start			
	% with i,j,k,l,m,n but this is not necessary			
t = 0.05*it;	% determine successive time intervals; note looped commands are indented			
<pre>f(it)=A*cos(ome*t); % store result as a vector f</pre>				
end	% terminate loop			
size(f)	% check size of the vector (it should be 100 x 1 (100 rows 1 column)			
% plot result				
plot(f)	% just plot result, with integer abscissa			
plot(0.05*[1:100],f,'linewidth',1) % plot result f vs t				
	%change width of line from 0.5 px (default) to 1			
<pre>xlabel('time / s')</pre>	% label x axis			
ylabel('function') % label y axis				

set(gca,'fontsize',14) % increase size of lables

help plot % find out about the many plotting options

Problem 2

Write a loop to determine the H₂ v=0 vibrational wavefunction at r=[0.8:0.02:1.9]. Call this array psi_values. Then plot these points.

IV. WORK WITH FUNCTIONS SYMBOLICALLY

```
% clear values of variables
clear A t ome
                     % clear all variables from workspace
clear all
syms A t ome
                    % declare A, T, omega as symbolic variables
f=A*cos(ome*t)
                    % redefine f in terms of symbolic variables
diff(f,t)
                     % derivative of f with respect to t
diff(f,A)
                     % derivative of f with respect to A
int(f,t)
                    % indefinite integral
int(f,t,pi/4,2*pi)
                      % definite integral
subs(int(f,t,pi/4,2*pi),[A ome],[30 1.2]) % give a definite value to omega
                                      \% in the result of the integration
single(ans)
                      % numerical value for answer
g=exp(A*t)/(1+t<sup>2</sup>) % more complicated expression
                     % display the expression for f more clearly
pretty(g)
ff=subs(f,[A ome],[30 2.5]) % give definite values to two of the parameters in f(A,ome,t)
ezplot(ff,[-2 4])
                       \% plot the result for -2 <= t <= 4
```

Problem 3

Declare the symbolic variables α and x, then define $\psi_0(x, \alpha)$ as a symbolic function **psi0**. NB The symbolic variable α should be defined as positive, namely

syms alpha x

assume(alpha,'positive') % note the apostrophes

Show that $\psi_0(x)$ is normalized

int(psi0*psi0,-inf,inf)

The wavefunction for v=2 is

$$\psi_2 = \left(\frac{\alpha}{\pi}\right)^{1/4} \frac{1}{\sqrt{2}} (2\alpha x^2 - 1)e^{-\alpha x^2/2}$$

Define a symbolic function psi2 for $\psi_2(x)$ and show that $\langle 2|2\rangle = 1$ and $\langle 2|0\rangle = 0$

The harmonic oscillator Hamiltonian is $\hat{H}(x) = \hat{T} + \hat{V} = -\frac{1}{2\mu} \frac{d^2}{dx^2} + \frac{1}{2}kx^2$. Use your symbolic expression for $\psi_0(x)$ to show that

 $\langle 0|\hat{V}|0\rangle = \omega/4$

and

 $\langle 0|\hat{T}|0\rangle = \omega/4$

Hint Remember that $\alpha = \sqrt{k\mu} = \omega\mu$.

V. FUNCTIONS

A. Anonymous functions

g=@(t)30*cos(2.5*t) ezplot(g,-2,4)	%the '@(t)' denotes a function of the variable t %use ezplot to plot the function
fminbnd(g,1,2)	% find the minimum of g in the range 1 <= t <= 2
gg=matlabFunction(ff)	% convert any symbolic expression ff to a function % note upper case F
int(ff,0,pi)	% integrate ff from 0 to pi
integral(gg,0,pi)	% numerically integrate the anonymous function from 0 to pi

VI. MINIMUM OF DISCRETE DATA

```
tt=[1 1.2 1.4 1.6 1.8] % five values of t
gx=g(tt) % 30 cos(2.5 t) at these five values
plot(tt,gx,'o-') % plot the four values, note the 'o-' commands a line-point plot
cc=polyfit(tt,gx,3) % fit these points with a cubic polynomial
rr=roots(polyder(cc)) % find the roots of the derivative of cc, this defines the minima
% note that only one value [rr(2)] lies in the range 1 < t < 1.8
polyval(cc,rr(2)) % determine the value of the function at this value</pre>
```

Problem 4

As a further example you can define an anonymous function of two variables for the wavefunction of the harmonic oscillator

ppsi0=@(alpha,xx)(alpha/pi)^(1/4)*exp(-alpha*xx.*xx/2)

% note that i'm using a different name for the independent

- % variable and for the function, so as not to redefine the symbolic variables psiO and x
- % also note that i'm making the definition so that the variable can be a vector in which case
- % use '.*' invoking element-by-element multiplication (see the Linear Algebra section below).

Then you can define a vector of independent variables, and obtain at once the values of $\psi_0(x)$,

t=[0:0.01:1];

plot(t,ppsi0(20,t)) % no FOR loop needed.

% Also, the name of the independent variable doesn't have to be xx

Define, similarly, an anonymous function of two variables (α and x) for the v=2 wavefunction. Call this function psi2(alpha,xx). Obtain a vector of values of psi2, and plot. Using the Matlab function ginput(1), obtain an estimate of the root of this function. Then, fit 4 points (call these xxx) around the root.

xxx=[0 .1 .2 .3] % guess that these straddle the root

cc=polyfit(xxx,psi2(alpha,xxx),3);

rr=roots(cc) % there will be several roots, pick the one that's physically reasonable
% this should be close to the value you got by graphical interpolation

vec=[.1 .2 .4]	% define a row vector of 3 elements			
vec'	% the prime is the transpose, converting this to a column vector			
vec*vec'	% the dot product			
vec'*vec	% the outer product			
mat=[.1 .2 .3; .4 .23;.5 1 0] $\%$ a 3x3 matrix, the semicolon indicates the end of a line				
mat(:,1)	% outputs the first column of the matrix as a column vector			
mat(2,:)	% outputs the 2nd row of the matrix as a row vector			
mat*vec	% a matrix-vector product (the result is a column vector)			
mati=inv(mat)	% the inverse of a matrix			
mati*mat	% the product of mat times its inverse; this is equal to the unit matrix			
identity(3)	% the 3x3 unit matrix			
mats=mat+mat'	% create a symmetric matrix			
eig(mats)	% the eigenvalues of this matrix			
[evec eval]=eig(mat)	% eigenvectors and eigenvalues of mats			
diag([.1 .2 .3 .4])	% create a diagonal matrix with [.1 .2 .3 .4] along the diagonal			
Matlab has an important property, that allows element-by-element multiplication or division of two vectors (or matrices) of the same size				
<pre>vecm=vec.*vec; (or vecd=vec./vec;) % note the '.' which precedes the % multiplication or division</pre>				

Problem 5

Define the symbolic variables cs, sn, H11, H12 and H22. where $cs \equiv \cos(\theta)$ and $sn \equiv \sin(\theta)$ Define the matrices

C=[cs sn;-sn cs]

H=[H11 H12;H12 H22]

E = C.'*H*C % diagonalize H
E = simplify(E) % simplify E

Then, determine the value of θ so that the off-diagonal matrix element of the C matrix vanishes. With this value of θ , determine the values of the diagonal matrix elements E_{11} and E_{22} .

Note: Here, use the symbolic capability of Matlab to help you solve the problem. You'll have to do some simple algebra on your own at the end, to finish the problem.