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I. ELECTRONIC STRUCTURE THEORY: ATOMS

A. Hydrogenic atoms

Consider the Hamiltonian for the interaction between a nucleus of charge +Z and a single

electron (Here we will use ρ for the distance from the origin in spherical polar coordinates.

We will then change variables, to be left with r, which is the more usual variable)

H(r, θ, φ) = − h̄2

2meρ2
∇2 − Ze2

4πǫoρ

= − h̄2

2meρ2

[

∂

∂ρ

(

ρ2
∂

∂ρ

)

+
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

− Ze2

4πǫoρ

= − h̄2

2meρ2

[

∂

∂ρ

(

ρ2
∂

∂ρ

)

− L̂2(θ, φ)

]

− Ze2

4πǫoρ
(1)

where L̂2 is the operator for the square of the angular momentum of the electron moving

around the nucleus. Technically, the mass which appears should be the proton-electron

reduced mass

µ =
mpme

mp +me

but since me is ∼2000 times smaller than mp, µ ≃ me.

We can simplify things if we define the distance in terms of the so-called Bohr radius a0

(the radius of the electron in the Bohr theory of the H atom), namely

r = ρ/a0

where

ao =
4πǫoh̄

2

mee2

In terms of r the potential becomes

V = − Ze2

4πǫoρ
=

−e4meZ

(4πǫo)2h̄
2r

https://en.wikipedia.org/wiki/Angular_momentum_operator
http://www.en.wikipedia.org/wiki/Bohr_radius
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Problem 1 : Use the chain rule
d

dy
=
dx

dy

d

dx

to show that
h̄2

2me

∂2

∂ρ2
=

mee
4

2(4πǫo)2h̄
2

∂2

∂r2

Use this result to show that in terms of r, θ and φ, the Hamiltonian of Eq. (1) is

H(r, θ, φ) =
mee

4

(4πǫo)2h̄
2

{

− 1

2r2

[

∂

∂r

(

r2
∂

∂r

)

− L̂2(θ, φ)

]

− Z

r

}

(2)

The Schrodinger equation for the motion of the electron in a hydrogenic atom is

H(ρ, θ, φ)ψ(ρ, θ, φ) = Eψ(ρ, θ, φ)

Replacing ρ with r and using Eq. (2), we have

{

− 1

2r2

[

∂

∂r

(

r2
∂

∂r

)

− L̂2(θ, φ)

]

− Z/r

}

ψ(r, θ, φ = εψ(r, θ, φ) (3)

where

ε =
(4πǫo)

2h̄2

mee4
E

Thus, we see that if we measure the distance in units of a0 (the atomic unit of distance, called

the bohr) and the energy in units of mee
4/[(4πǫo)

2h̄2] (the atomic unit of energy, sometimes

called the Hartree), we can eliminate all the messy constants from the Schrodinger equation.

We have already introduced these atomic units in the first section of Chapter 1. If we

multiply Eq. (3) by 2r2 and take the right hand side over to the left, we get

[

− ∂

∂r

(

r2
∂

∂r

)

+ L̂2(θ, φ)− 2Zr − 2r2ε

]

ψ(r, θ, φ = 0 (4)

which we can write as
[

Ĥr(r) + L̂2(θ, φ)
]

ψ(r, θ, φ) = 0 (5)

where the definition of Ĥr(r) is obvious from comparison of Eqs. (4) and (5).

http://en.wikipedia.org/wiki/Atomic_units
http://en.wikipedia.org/wiki/Atomic_units
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Here we have separated the Hamiltonian operator into a term depending only on r and

a term depending only on θ and φ. In this case, the mathematics of partial differential

equations allow us the write the solution as a product of a term depending only on r and a

term depending only on θ and φ, namely

ψ(r, θ, φ) = R(r)Y (θ, φ)

Inserting this into Eq. (5), dividing by ψ and simplifying we get

Ĥ(r)ψ(r, θ, φ) = −L̂2(θ, φ)ψ(r, θ, φ)

or

Y (θ, φ)Ĥ(r)R(r) = −R(r)L̂2Y (θ, φ)

We can divide by ψ(r, θ, φ) = R(r)Y (θ, φ), and simplify to get

Ĥ(r)R(r)

R(r)
= −L̂

2Y (θ, φ)

Y (θ, φ

Here, the left-hand side depends only on r while the right-hand side depends only on θ

and φ. For this equality to be true in general, each side, separately, has to be equal to a

constant. Let’s call this constant K. Thus, we have

−L̂
2Y (θ, φ)

Y (θ, φ
) = K (6)

and
Ĥ(r)R(r)

R(r)
= K (7)

Equation (6) can we rewritten as the eigenvalue equation

L̂2Y (θ, φ) = −KY (θ, φ)

which is identical to the Schrodinger equation for the rigid rotor. The solutions must be

finite and single valued. In other words

Y (θ + π, φ) = Y (θ, φ)
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and

Y (θ, φ+ 2π) = Y (θ, φ)

To satisfy these boundary conditions, the constant K must equal −j(j + 1), where j is a

positive semi-definite integer (j = 0, 1, 2, . . .). Here, to avoid confusion of l (el) with the

number one, we use j to designate the rotational angular momentum with m its projection.

The solutions are called Spherical Harmonics, Yjm(θ, φ); you can find expressions many places.

They are eigenfunctions of L̂2 and L̂z, namely (in atomic units)

L̂2Yjm(θ, φ) = j(j + 1)Yjm(θ, φ)

and

L̂zYjm(θ, φ) = mYjm(θ, φ)

The spherical harmonics are normalized and orthogonal. In other words, the integral of the

product of two spherical harmonics over all angles, weighted by the area element in spherical

polar coordinates,

dA = sin θ dθ dφ

is
∫ ∫

Y ∗
j′m′(θ, φ)Yjm(θ, φ)dA = δjj′δmm′

With the restriction that K = −j(j + 1), we can rewrite Eq. (7) as

Ĥ(r)R(r) = j(j + 1)R(r)

or
[

− 1

2r2
∂

∂r

(

r2
∂

∂r

)

− Z

r
+
j(j + 1)

2r2
− ε

]

R(r) = 0 (8)

We can further simplify this equation by defining a new function G(r),

R(r) = G(r)/r

http://www.en.wikipedia.org/wiki/Spherical_harmonic
http://www.en.wikipedia.org/wiki/Spherical_harmonic
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Problem 2 : Show that

1

r2
∂

∂r

[

r2
∂

∂r

]

R(r) =
1

r

∂2G(r)

∂r2

Then show that Eq. (8) reduces to

[

−1

2

∂2

∂r2
− Z

r
+
j(j + 1)

2r2

]

G(r) = εG(r) (9)

Equation (9) is entirely equivalent to the usual one-dimensional Schrodinger equation,

with potential

V (r) = −Z
r
+
j(j + 1)

2r2

At large r, the second term, which varies as r−2, goes to zero faster than the first term,

which varies only as r−1. Similarly, as r → 0, the 2nd term goes to +∞ faster than the first

term goes to −∞. The potential is consequently negative at large r but positive at small r,
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FIG. 1. V (r) for the hydrogen atom (Z = 1), with j = 0, 1 and 2.

as shown in Fig. 1.

The solution G(r) has to behave correctly at the origin, and go to zero at infinity. It is
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possible to show that the limiting behavior at the origin is

lim
r→0

Gj(r) ∼ rj+1

The radial functions R(r) are tabulated many places. They are real and proportional to

Laguerre polynomials, and are indexed in the principal quantum number n, as well as in j

(but not m). Here n is restricted to positive integers. Further, for a given n, the allowed

values of j are restricted to all positive integer values less than n − 1. The functions are

normalized by integration over all r with the volume element r2dr, so that

∫ ∞

0

Rn′,j′(r)Rn,l(r)r
2dr =

∫ ∞

0

Gn′,j′(r)Gn,j(r)dr = δn,n′δj,j′ (10)

The energy, in atomic units, is given by the famous Rydberg formula

εn = − Z2

2n2

Note that the energy is independent of j. For the hydrogen atom all rotational and projection

levels with principal quantum number n are degenerate. This is remarkable. Despite the

large difference between the j = 0, j = 1, and j = 2 potentials seen in Fig. 1, the energy

of the second level in the j = 0 potential equals exactly the energy of the first level in the

j = 1 potential. Similarly, the energy of the third level in the j = 0 potential equals exactly

the energy of the second level in the j = 1 potential, and both equal exactly the energy of

the first level in the j = 2 potential.

The other thing to note is that the radial functions Rnj(r) have n− j − 1 nodes. [A node

is a discrete values of r greater than zero and less than +∞ where R(r) vanishes]. Also, at

large r, the behavior of the wave function is given by

lim
r→∞

G(r) ∼ rn−1 exp(−rZ/n)

.

http://www.en.wikipedia.org/wiki/Hydrogen_atom
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Problem 3 :

The radial functions for the 1s and 2p states are

R1s(r) = N1s exp(−Zr) (11)

R2p(r) = N2p r exp(−Zr/2)

Use Eq. (10) to show that

N1s = 2ζ3/2

Then determine a similar expression for the normalization coefficient N2p. Remember

that the normalization relation is given by Eq. (10).

The radial function for the 2s state is

R2s(r) = N2s(1 +Br) exp(−Zr/2)

Determine the value of N2s and B. In solving this problem you will need the integral

∫ ∞

0

xnexp(−αx)dx =
n!

αn+1

At what value of r does the node in the 2s radial function occur?

Then, determine the expectation values of r and 1/r in the 1s, 2s, and 2p states of a

one-electron atom with nuclear charge Z. The expectation value of r is an estimate of

the size of the one-electron atom.

Finally, suppose you have a hydrogen atom with the electron replaced by a negative

muon. What would be the radius of this atom?

B. Other central potential problems

An entirely similar procedure can be used to solve other two-particle problems in which

the potential depends only on the distance between the two particles. The Hamiltonian is

http://en.wikipedia.org/wiki/Muon
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similar to Eq. (1),

H(r, θ, φ) = − h̄2

2µr2

[

∂

∂r

(

r2
∂

∂r

)

− L̂2(θ, φ)

]

+ V (r) (12)

where µ is the reduced mass of the two particles µ = (mamb)/(ma+mb). [Equation (8) refers

specifically to the hydrogen atom where the mass is equal to unity in atomic units.] The

wavefunction is separable into the product of a spherical harmonic and a radial function R(r).

This latter can be written as G(r)/r, where G(r) satisfies the one-dimensional (ordinary)

differential equation:

[

− h̄2

2µ

d2

dr2
+ V (r) +

h̄2j(j + 1)

2µr2

]

G(r) = εG(r) (13)

Problem 4 : Consider a spherical box, defined by the potential

V (r) = 0, r ≤ a

and

V (r) = ∞, r > a

The boundary conditions for the radial wave function G(r) are then that G(r) vanish

at r = a and satisfy Eq. (13) with V (r) = 0 inside, in other words (in atomic units)

[

− 1

2µ

d2

dr2
+
j(j + 1)

2µr2

]

G(r) = εG(r), r ≤ a (14)

By making a variable change z = (2µε)1/2r, use the chain rule

d

dr
=
dz

dr

d

dz

show that this equation is equivalent to the Ricatti-Bessel equation

[

z2
d2

dz2
+ z2 − n(n+ 1)

]

wn(z) = 0

Here, we have replaced the integer index j by the integer index n, to avoid confusion

http://mathworld.wolfram.com/RiccatiDifferentialEquation.html
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later.

The solutions which behave regularly at the origin are

wn(z) = zjn(z)

where jn(z) is a spherical Bessel function of the first kind (see also section 10.4.7 in the

NIST digital library of mathematical functions or the equivalent section in the classic

Handbook of Mathematical Functions by M. Abramowitz and I. Stegun. Explicit expres-

sions for these functions are, for n = 0, 1, 2 (shown in Fig. 2)

w0(z) = sin z

w1(z) = z−1 sin z − cos z

w2(z) = (3z−2 − 1) sin z − 3z−1 cos z

In general, in terms of the regular Bessel function Jn(z), we have

wn(z) =
(πz

2

)1/2

Jn+1/2(z)

The allowed energy levels are those for which w(z) vanishes at z = (2µε)1/2r0. In

other words, (2µε)1/2r0 must correspond to a root of wn(z). Determine the first and

second roots of w0(z) and w1(z) [the lowest two values of z for which w0(z) and w1(z)

vanish], as well as the first root of w2(z).

Hint: to work this in Matlab, you first have to define a function, w1(x), say, using

Matlab’s anonymous function capability

w1(x)=@(x) sin(x)/x - cos(x)

This defines a function w1(x) which is equal to (sin x)/x - cos x. The “@(x)” indicates

that you’re defining an anonymous function of x which will be defined immediately after

the @(x). Then, you need to search for a root of w1 between, say 0.5π and 1.5π

fzero(w1,[0.5 1.5]*pi) The answer comes back as 4.4934, which is 1.4303π.

Alternatively, in Wolfram alpha, you would enter the request “using Newtons method

http://mathworld.wolfram.com/SphericalBesselFunctionoftheFirstKind.html
http://dlmf.nist.gov
http://www.nr.com/aands/
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solve sin(x)/x - cos(x)=0”. The answer comes back as 4.4934. To get the 2nd root, you

should enter the request “using Newtons method solve sin(x)/x - cos(x) = 0 starting at

x=10” (or whatever you think would be a good initial guess).

From the values you obtain for the roots of w1(x), w2(x) and w3(x), determine, as a

function of the radius of the box r0, the energy of the lowest two s (n = 0) and p (n = 1)

levels of an electron in a spherical box as well as the energy of the lowest d (n = 2)

level. What should the radius of the box (in Bohr) be so that the energy of the 1s → 2p

transition is equal to that of the H atom?

0 2 4 6 8
z

-1

-0.5

0

0.5

1

wo (blue), w1 (red), w2 (orange

FIG. 2. Ricatti-Bessel functions w(z) for n=0, 1, and 2.

C. Perturbation and simplest variational treatment of the He atom

The Hamiltonian for the motion of the two electrons in the He atom is (in atomic units)

H(1, 2) = h(1) + h(2) + 1/r12 (15)

Here, r12 is the distance between the two electrons

r12 = |~r1 − ~r2|
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and the one-electron Hamiltonian h is the sum of the operator for the kinetic energy of the

electron and the attraction of the electron to the nucleus, namely

h(1) = −1

2
∇2

1 − Z/r1 (16)

and, similarly, for h(2).

In a perturbation theory approach, we can treat the electron repulsion as the perturbation,

so that the zeroth order Hamiltonian is

H0 = h(1) + h(2) . (17)

This Hamiltonian is separable so that the wavefunction can be written as the product of two

hydrogenic one-electron functions ψn,l,m and the total energy is the sum of the hydrogenic

energies, namely

E(0)
n = −Z

2

2

(

1

n2
1

+
1

n2
2

)

Here the index n is a collective index for n1, l1, m1, n2, l2, m2. In the lowest state, with energy

E
(0)
0 = −Z2, both electrons are described by the hydrogenic 1s function

1s(r) ≡ R1s(r)Y00(θ, φ) = R1s(r)

(

1

4π

)1/2

=

(

Z3

π

)1/2

exp(−Zr) . (18)

The two-electron wavefunction is

ψ
(0)
0 (1, 2) = 1s(1)1s(2) (19)

The first-order correction to the energy is just the expectation value of the perturbation,

namely, for the ground state

E
(1)
0 =

〈

ψ
(0)
0 (1, 2)

∣

∣

∣
r−1
12

∣

∣

∣
ψ

(0)
0 (1, 2)

〉

=

∫ ∫

1s(1)1s(1)
1

r12
1s(2)1s(2)dV1dV2 (20)

=

(

Z3

π

)2 ∫ ∞

0

r21dr1

∫ ∞

0

r22dr2

∫ π

0

sin θ1dθ1

∫ π

0

sin θ2dθ2

∫ 2π

0

dφ1

∫ 2π

0

dφ2e
−2Zr1e−2Zr2r−1

12
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This 6-dimensional “two-electron” integral can be evaluated by making use of the expansion

1

r12
=

∞
∑

λ=0

rλ<
rλ+1
>

Pλ(cos θ12) (21)

Here r< and r> are the smaller and larger of r1 and r2, in other words: r< = min(r1, r2).

Also Pλ is a Legendre polynomial and θ12 is the angle between ~r1 and ~r2. The definition of

the dot product of two vectors implies that

cos θ12 = ~r1 · ~r2/(r1r2)

Thus, using the projection of ~r into Cartesian coordinates

~r = r(cos θẑ + sin θ cosφx̂+ sin θ sinφŷ) ,

we obtain

cos θ12 = cos θ1 cos θ2 + sin θ1 sin θ2(cosφ1 cos φ2 + sinφ1 sin φ2)

Since the s functions are spherical, only the λ=0 term in Eq. (21) will give a non-vanishing

result, so when evaluating Eq. (21), you can use

1

r12
=

1

r>
(22)

Problem 5 : Show that the λ = 1 term in Eq. (21) makes a vanishing contribution to

E
(1)
0 (Eq. 21).

Thus, schematically,

∫∫

f(r1)
1

r12
g(r2)dτ1dτ2 = 16π2





∞
∫

0

f(r1)r1dr1

r1
∫

0

g(r2)r
2
2dr2 +

∞
∫

0

g(r2)r2dr2

r2
∫

0

f(r1)r
2
1dr1





(23)

In the first integral on the right-hand-side, r2 is always less than r1 so that 1
r>

= 1/r1. In
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the second integral, r1 is always less than r2 so that 1
r>

= 1
r2
. Figure 3 depicts the domain of

r1

r2

r2>r1

r 2
=
r 1

r1>r2

FIG. 3. Illustration of the range of integration in Eq. (23)

integration. Both r1 and r2 can range over all positive values. The diagonal line corresponds

to r1 = r2. In the red shaded region r1 is greater than r2. This region corresponds to the

first double integral in Eq. (23).

Problem 6 : Show that

[1s2|1s2] ≡ [1s1s|1s1s] =
∫ ∫

1s(1)2
1

r12
1s(2)2dV1dV2 =

5Z

8
(24)

With the result of this problem, we see that the energy of the ground (1s2) state of the

two-electron ion with nuclear charge Z is predicted to be

E
(0)
0 + E

(1)
0 = −Z2 +

5Z

8

For He this is –2.75 hartree. The true energy of He can be determined by adding the

binding energies of the two electrons. The binding energy of the first electron is just the

energy of 1s state of He+, namely –2. The binding energy of the second electron is just

the negative of the ionization potential of the He atom. To get this, go to the the NIST

tables of electron energy levels of the atoms and positive ions. Enter He I (that’s the des-

ignator for the He atom, the I means the neutral atom. The designator II would mean

the single-ionized atom (the positive ion), III would mean the doubly-ionized atom, and so

forth). When the window returns data, scroll down until you find He II (2S1/2) Limit

198 310.669. This is the ionization potential of He. Converting from wave numbers to

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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Hartree (dividing by 201474.6) shows that the ionization potential is 0.90357 Hartree. Thus,

the total electronic energy of He is −2+ (−0.90357) = −2.90357 Hartree. The perturbation

theory estimate of –2.75 is quite poor.

To zeroth-order the wavefunction for He [Eq. (19] is a product of one-electron hydrogenic

orbitals. Approximating a multi-electron wavefunction as a product of one-electron functions

is how we will describe wavefunctions of all many-electron atoms and, eventually, molecules.

For He, as we have seen, the zeroth-order choice for these one-electron functions are 1s

functions with exponential factors (−Zr) which depend on the nuclear charge. We can

improve this, quite easily, by replacing the nuclear charge (Z) by a variable constant ζ .

Because each electron screens the other electron to some extent, we anticipate that ζ will

be less than Z. In other words, we can define a generalized hydrogenic 1s orbital

1sζ =

(

ζ3

π

)1/2

exp(−ζr) (25)

where ζ is a variable screening constant. In this variable-ζ approximation the He wavefunc-

tion is, instead of Eq. (19,

ψζ(1, 2) = 1sζ(1)1zζ(2) (26)

We will then calculate the variational energy

Evar = 〈ψ(1, 2)|Ĥ|ψ(1, 2)〉/〈ψ(1, 2)|ψ(1, 2)〉 = 2 〈1sζ |h |1sζ〉+ [1s2ζ|1s2ζ ]

which will be a function of ζ . By minimizing this expression with respect to varying ζ , we

can obtain the best variational estimate of the energy of the two electrons in He, subject to

the constraint that the wavefunction is adequately described by the product form of Eq. (26).

Problem 7 Show that 〈1sζ |h |1sζ〉 = −Zζ + ζ2/2

Problem 8 : Use the results of problems 6 and 7 to determine an expression in terms

of Z and ζ for the variational energy of the He atom. Then minimize this to determine
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the optimal screening coefficient ζ and the best variational energy.

Problem 9 : Consider two 1s functions i and j, given by Eq. (25), where 1si has the

screening constant ζ and 1sj has the screening constant ζ ′. Determine expressions for

the one electron integrals 〈i|j〉 (overlap), 〈i| − 1
2
∇2|j〉 (kinetic energy), and 〈i| − 1/r|j〉

(nuclear-electronic attraction energy). The results will be explicit functions of ζ and ζ ′.

Also, determine an expression for the coulomb and exchange two-electron integrals.

[1s2|1s′2] ≡ [1s1s|1s′1s′] =
∫ ∫

1s(1)2
1

r12
1s′(2)2dV1dV2

[1s1s′|1s′1s] =
∫ ∫

1s(1)1s′(1)
1

r12
1s′(2)1s(2)dV1dV2

In every case, the results will be a function of both ζ and ζ ′. To check your work,

Table I gives values of the desired integrals for ζ = 1 and ζ ′ = 3.

TABLE I. One- and two-electron integrals involving two 1s functions: 1s with screening constant

ζ = 1 and 1s′ with screening constant ζ ′ = 3.

integral value (Hartree)
〈1s|1s′〉 0.64952

〈1s| − 1
2
∇2|1s′〉 0.94728

〈1s| − 1/r|1s′〉 –1.2990
[1s2|1s′2] 0.89062

[1s1s′|1s′1s] 0.52734

D. Basis set solution of the Hartree equation for the He atom

The choice of the wavefunction for the two-electron He atom which underlies the pre-

ceding section is a product of one-electron functions. This is guided by the separation of
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the Hamiltonian in Eq. (17) in which the zeroth-order Hamiltonian is a sum of identical

one-electron terms. The best product wavefunction of this type is given by the Hartree

approximation, in which each of the two He 1s electrons moves in the field of the nuclear

attraction and in the averaged field of the repulsion with the other electron. Consequently,

in the so-called Hartree (or Hartree-Fock [1]) approximation the Schrodinger equation for

the 1s electron is the following one-electron, three-dimensional integro-differential equation

ĤHFφ(r1) =

[

−1
2
∇2

1 −
2

r1
+

∫

φ2(r2)

r12
dτ2

]

φ(r1) = εHFφ(r1) (27)

Since the solution appears under the integral sign, it is most straightforward to solve

Eq. (27) iteratively. One guesses a solution, φ(0)(r1), which then defines the so-called “mean-

field” potential, which we designate Vee,

Vee(r1) =

∫ |φ(r2)|2
r12

dτ2 , (28)

We then solve the Hartree Schroedinger equation [Eq. (27)] for φ(1)(r1), with which we

determine a new mean-field potential, and then new value of εHF and so on until convergence

is reached, at which point the calculated energy εHF at iteration n + 1 has not changed

significantly from its previous value. The convergence of this iterative process is called

“self-consistency”, and the overall method: “self-consistent-field” (SCF).

Although for atoms it is possible to do this all numerically, for molecules the only practical

method is by expansion of the solution in a basis set. To illustrate this, for simplicity suppose

we expand the Hartree-Fock orbital in just two basis functions

φ(n)(r) = c
(n)
1 χ1(r) + c

(n)
2 χ2(r) (29)

Here the superscript n designates the nth iteration. From Eqs. (28) and (29), we see that

after the nth iteration the mean field potential arising from the repulsion of electron 1 with

the averaged position of electron 2 is

Vee(r1) =

∫ |φ(r2)|2
r12

dτ2 =
∑

k,l

c
(n)
k c

(n)
l

∫

χ∗
k(r2)

1

r12
χl(r2)dτ2 (30)

Here, for simplicity, we will assume that the expansion coefficients are real.
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At the n + 1th iteration, as in any linear variational method, we obtain the expansion

coefficients c
(n+1)
i by diagonalizing the matrix of ĤHF in the 2×2 basis of {χ1, χ2}. Note that

the basis functions don’t change during the iterative process; only the expansion coefficients

ci. Schematically, the matrix elements of ĤHF are sums of matrix elements of the one-

electron Hamiltonian ĥ(1) = −1
2
∇2 − 2/r and of the mean-field repulsion Vee(1), so that

〈χi| ĤHF |χj〉 = −1

2
〈χi| ∇2 |χj〉 − 〈χi|

2

r
|χj〉 −

1

2
〈χi| Vee |χj〉 (31)

The matrix elements of Vee are

(Vee)ij =
∑

k,l

c
(n)∗
k c

(n)
l

∫

χ∗
i (r1)χ

∗
k(r2)

1

r12
χj(r1)χl(r2)dτ2dτ1 (32)

We use the compact notation for these so-called two-electron integrals that we have

already introduced in Eq. (24) and in Problem 9, namely

[ij|kl] =
∫

χ∗
i (r1)χ

∗
k(r2)

1

r12
χj(r1)χl(r2)dτ2dτ1 =

∫

χ∗
i (r1)χ

∗
j (r1)

1

r12
χk(r2)χl(r2)dτ2dτ1 (33)

In terms of this notation, Eq. (32) becomes

(Vee)ij =
∑

k,l

c
(n)∗
k c

(n)
l [ij|kl] (34)

Note that [ij|kl] defines a square matrix of order N2 × N2 = N4. We will designate this

matrix as (h12)
ij
kl with the understanding that each ijth element is a 2×2 matrix (two possible

values of k and two possible values of l). Let cn define a column vector of length 2. Then

(Vee)ij = c
(n) †(h12)

ij
kl c

(n) , (35)

where the superscript † denotes the Hermitian adjoint (that is, a row vector with elements

that are the complex conjugates of the column vector c(n)).

A standard procedure is to use so-called Slater (hydrogenic) functions

gi = Ni exp(−ζir) (36)

as the basis functions {χ1, χ2}. Because these functions are not orthogonal, we will need
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to determine the overlap matrix S with elements Sij ≡ 〈χi|χj〉, and then use one of the

methods described in Subsection D of Chapter 1 to determine the variational energy in this

non-orthogonal basis.

Thus, the iterative procedure consists of

(a) Determination of the N×N matrix of the one-electron Hamiltonian ĥ and of the overlap.

(b) Determination of the N2 × N2 matrix of two-electron integrals [ij|kl] (many of these

will be the same by symmetry; see below).

(c) An initial choice of the c
(0) vector.

(d) Determination of the N × N matrix of the mean-field repulsion from Eq. (35). (e)

Diagonalization of the N × N matrix of the Hartree Hamiltonian (ĤHF) to determine the

new coefficient vector c(1) and the new Hartree energy ε
(1)
HF

(f) Iteration of steps (d) and (e) until self-consistency is reached, at which point c(n+1) = c(n)

and ε
(n+1)
HF = ε

(n)
HF. Usually, one choses an energy cutoff criterion:

∣

∣

∣
ε
(n+1)
HF − ε

(n)
HF

∣

∣

∣
≤ ǫ (37)

where ǫ = 10−8 hartree.

When self-consistency is reached, from Eq. (27) one sees that

ε
(n)
HF =

〈

φ(n)
∣

∣

∣
ĤHF

∣

∣

∣
φ(n)

〉

=
〈

φ(n) |h|φ(n)
〉

+
[

φ(n)φ(n)|φ(n)φ(n)
]

(38)

In other words, the Hartree-Fock energy is the one-electron energy of the electron in orbital

φ(n) plus the average repulsion energy of this electron with the other electron. Note, then

that twice the Hartree-Fock energy is equal to twice the one-electron energy plus twice the

two-electron repulsion energy.

In the Hartree approximation the He wavefunction is the product of the one-electron

functions which are the iterated solutions to Eq. (27). We have

ψ
(n)
HF(1, 2) = φ

(n)
HF(1)φ

(n)
HF(2) (39)

Thus, the total energy of the He atom, in the Hartree-Fock approximation is

EHe = 2εHF −
[

φ(n)φ(n)|φ(n)φ(n)
]

. (40)
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This result is important: The variational estimate of the total energy of the atom in the

Hartree-Fock approximation is n
¯
ot equal to the sum of the Hartree-Fock orbital energies.

1. Symmetry of two-electron integrals

For two basis functions χ1 and χ2, there are only 6 distinct matrix elements in the 4×4

matrix of two-electron integrals. If we use the simplified notation 1 ≡ χ1 and 2 ≡ χ2, these

distinct matrix elements arer1 [11|11], [22|22], and

[11|22] = [22|11]

[11|12] = [11|21] = [12|11] = [21|11]

[12|12] = [21|21] = [12|21] = [21|12]

[12|22] = [21|22] = [22|12] = [22|21]

Table II shows the convergence of this iterative Hartree-Fock procedure, with two basis

functions with ζ1 = 1 and ζ2 = 3. In this table, C1 and C2 are the expansion coefficients in

Eq. (29). The convergence is rapid. Note that twice the Hartree-Fock energy εHF is NOT

equal to the electronic energy of the atom. By varying ζ1 and ζ2, you can obtain an even

better estimate, as shown in the last line of the table.

TABLE II. Convergence of double-zetaa Hartree approximation to the 1s2 state of the He atom.

n εn
b C1 C2 EHe

1 –1.1278 0.6462 0.4512 –3.0066
2 –0.8923 0.7483 0.3363 –2.7192
3 –0.9536 0.7203 0.3689 –2.7988
4 –0.9361 0.7282 0.3598 –2.7764
5 –0.9410 0.7260 0.3623 –2.7827
6 –0.9396 0.7266 0.3616 –2.7809
7 –0.9400 0.7264 0.3618 –2.7814
8 –0.9399 0.7265 0.3618 –2.7813

8c –0.9179 0.8416 0.1829 –2.8617

a ζ1 = 1 and ζ2 = 3.
b Energies in Hartree.
c ζ1 = 1.452 and ζ2 = 2.900.
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The best single-exponential (ζ = 1.6875) and Hartree descriptions of the behavior of the

1s electron in the He atom are remarkably similar. In Fig. 4 we compare the probability

ρ(r) of finding the 1s electron at a distance r from the He nucleus

ρ(r) = 1s(r)2r2

predicted by the Hartree and single-exponential orbitals.

0 0.5 1 1.5 2 2.5 3
r / bohr

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

ρ
(r

)=
r2
Ψ

2
(r

)

comparison HF (blue) and single exponential (red) for ρ(r)

FIG. 4. Illustration of ρ1s(r) for Hartree-Fock (blue) and single-exponential (red: ζ = 1.6875).

We see that the HF density is slightly more delocalized, and hence leads to a slightly

lower of the electronic repulsion. From Eq. (24) we calculate that the average repulsion

predicted by the single-exponential description is [1s2|1s2]ζ=1.6875 = 1.0547 H. From Eq. (38)

and the last row in Table II we see that [1s2|1s2]HF = 1.0259 H, slightly lower.

E. Configuration Interaction

Expansion of the solution to the Hartree equation [Eq. (27)] in a basis results, by the

variational principle, in an upper bound to the exact Hartree-Fock energy. Often the size of

the basis is characterized by the number of Slater functions [Eq. (36)] which are included,

with the notation “double-zeta” (dz) for two functions, “triple-zeta” (tz) for three functions,

etc.
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As we mentioned earlier, the true energy of He is –2.90357 Hartree. This is 0.042 Hartree

lower than the Hartree-Fock limit. The reason for this significant error is that in the Hartree-

Fock approximation each electron moves in the average field due to the other electron and the

nucleus. Instantaneously, each electron avoids the other in a more complicated fashion. It is

this instantaneous correlation between the positions of the two electrons which is neglected

in the Hartree-Fock approximation. The correction to the energy is called the “correlation

energy”.

Ecorr = EHF − Eexact

This is usually on the order of 1 eV (0.037 Hartree) for each pair of electrons. Table III

gives the Hartree-Fock and exact energies of the two-electron ions from H− up to C4+.

TABLE III. The Hartree-Fock and exact energiesa of the two-electron ions with nuclear charge Z.

Atom Z EHF Eexact

H− 1 –0.487294 –0.527736
He 2 –2.861677 –2.907325
Li+ 3 –7.236411 –7.279723
Be2+ 4 –13.6113000 –13.655582
B3+ 5 –21.9862332 –22.031727
C4+ 6 –32.3611910 –32.409062

a Energies in Hartree units.

Problem 10 : From the energies listed in Tab. III answer the following questions:

(a) In the Hartree-Fock approximation would you predict the H− ion be stable? In

other words, will H− be at a lower energy than H and a free e?

(b) Calculate and plot the correlation energies of the two-electron ions from H− up to

C4+.

(c) Would you expect the correlation energy to increase or decrease with Z? Why?

Recovery of the correlation energy can be achieved only by expanding the variational
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wavefunction beyond the Hartree-Fock approximation, namely (for He)

Ψ(1, 2) = φHF(1)φHF(2) +

∞
∑

n=1

C(1)
n φHF(1)ψn(2) +

∞
∑

n,m=1

C(2)
nmψn(1)ψm(2)

Here {ψm} is a set of one-electron functions that are orthogonal to the Hartree-Fock 1s

(φHF) orbital. The first summation includes all one-electron (single) excitations out of the

Hartree-Fock wavefunction, while the second summation includes all two-electron (double)

excitations. To include the exchange symmetry of the electrons, this expansion should be

written as

Ψ(1, 2) = φHF(1)φHF(2) +

∞
∑

n=1

D(1)
n [φHF(1)ψn(2) + φHF(2)ψn(1)]

+

∞
∑

n,m=1

D(2)
nm

1

1 + δnm
[ψn(1)ψm(2) + ψn(2)ψm(1)] (41)

The matrix of the Hamiltonian is then constructed in the large basis of singly and doubly

excited states, then diagonalized. This technique is called “configuration-interaction”, or,

CI. In practice, the number of states gets rapidly very large.

For example, suppose you are using a double-zeta s orbital basis. On linear combination

is the 1s Hartree-Fock orbital. The second (orthogonal) combination, call it φ2, defines the

sole excited (or “virtual”) orbital. There is then one singly-excited state φHFφ2 and one

doubly-excited state φ2
2. So the CI consists of 3 states. If you use a triple-zeta s orbital

basis, then there are two virtual s orbitals. There are two singly-excited states and three

doubly-excited states.

If all the virtual orbitals are limited to s functions, then the CI energy is called the “s-

limit”. One can add p, d, etc functions to the basis, which will all be orthogonal to φHF.

The CI energy is then called the sp-limit, the spd-limit, etc. Table IV shows the convergence

of the calculated energy of He as the size of the CI is increased. Eventually, we do get close

to the three energy, but the convergence is slow. The number of states and the number

of two-electron integrals goes up very dramatically. Thus the calculations rapidly become

more difficult while the differential improvement of the calculated energy becomes smaller

and smaller.

For a system with more than two electrons, the summation extends over triple, quadruple,
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TABLE IV. Convergence of calculated CI energies (Hartree) for the 1s2 state of the He atom.

basis limit ECI ∆E
a configurations two-electron integrals

v5z Hartree-Fock -2.86162 4.2×10−2 1
v5z s-limit –2.87891 2.5×10−2 15 120
v5z sp-limit –2.90036 3.2×10−3 45 2535
v5z spd-limit –2.90255 1.0×10−3 114 21726
v5z spdf -limit –2.90304 5.3×10−4 195 82977
v5z spdfg-limit –2.90315 4.2×10−4 261 163437
v6z spdf -limit –2.90339 1.8×10−4 522 701058

exact b –2.90357

a Ecalc − Eexact.
b Sum of first and second ionization energies.

and higher-order excitations. In practice, it is very difficult to carry out a full CI calculation

including all triple or higher-order excitations. Triple excitations can, however, be included

perturbatively. Table V compares the calculated energies for the Be atom with the exact

value. The correlation energy is 2.56 eV (EHF − Eexact). Of this 82% is recovered by a CI

calculation including all single- and double-excitations, and 93% is recovered by the calcu-

lation in which triple excitations are included perturbatively. Still, the remaining ≈ 7% of

the correlation energy, 0.2 eV, is due to higher-order excitations, which can be included only

in extremely computer-intensive calculations. To illustrate this: the HF, CI, and CCSD(T)

calculations in Table V took a few minutes on my laptop. But, the FCI calculations took

a few hours. Note that even when a complete (full) CI calculation is done, the energy lies

≈1.9×10−3 H above the experimentally-determined value. This error is due to the incom-

pleteness of the basis set used to describe the one-electron orbitals. In principle, any CI

calculation is systematically improvable, in the sense that you can always go to one more

order: including all excitations up to order N , and then all excitations to order N+1, and so

forth, the way to what is called a full CI, in which all single-, double-, triple-, quadruple-, up

to N -excitations (where N is the number of electrons in the atom or molecule). Of course,

this may be impossible to achieve in practice.
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TABLE V. Convergence of calculated spdfgh(l = 0 − 5)-limita energies (Hartree) for the 1s22s2

state of the Be atom.

basis calculation ECI ∆E
b

v5z Hartree-Fock –14.573012 9.54×10−2

v5z CI-SD –14.662429 6.01×10−3

v5z CC-SD(T)c –14.666506 1.93×10−3

v5z FCId –14.666538 1.90×10−3

exact e –14.668444

a Correlation-consistent, core-valence quintuple zeta basis (pcv5z). 145 total basis functions
b Ecalc − Eexact.
c Coupled-cluster calculation with perturbative inclusion of triple excitations.
d Full CI (single+double+triple+quadruple excitations included.
e Sum of ionization energies.

F. Cusp condition

The slow convergence of the CI expansion is due to the so-called Kato cusp condition

[see C. R. Myers, C. J. Umrigagr, J. P. Sethna, and J. D. Morgan II, Phys. Rev. A 44 5537

(1991)]. When two particles, of charges q1 and q2, and masses m1 and m2, approach one

another, the slope of the wavefunction is

lim
r12→0

∂Ψ

∂r12
= µ12q1q2Ψ(r12 = 0) (42)

Here, µ12 is the reduced mass and r12 is the distance between the two particles.

An example of this is the the wavefunction on the position of the electron as it approaches

the nucleus. Here, in atomic units, µ12 ≈ 1, q1 = Z, and q2 = −1, so that ∂Ψ/∂r12 →
−ZΨ(0). As an example, consider the 1s orbital of a hydrogenic atom

φ1s = R1s(r)Y00(θ, φ) = (Z3/π)1/2 exp(−Zr)

. Here r, the distance between the electron and the nucleus, is just the coordinate r12 which

appears in Eq. (42). By differentiation, you can show that the cusp condition [Eq. (42)] is

exactly satisified. The cusp in the 1s orbital (the first derivative with respect to r) at the

origin is positive.

Similarly, when two electrons approach one another, µ12 = 1/2, q1 = q2 = 1 so that
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∂Ψ/∂r12 → +1
2
Ψ(0). This corresponds to a negative (downward oriented) cusp at r12 = 0.

As shown in Eq. (41), we are trying to approximate the two-electron wavefunction as a sum

of symmetric products of one-electron functions (“orbitals”). It is easy to show from Eq. (41)

(and seen in Fig. 5) that for a product of one-electron functions limr12→0 ∂Ψ/∂r12 = 0 which

is incorrect. So we are trying to approximate a cusp by a sum of functions that are cuspless.
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FIG. 5. The Hartree-Fock wavefunction for He is given by Eq. (39)]. Since the 1s function is

peaked sharply at r = 0 (the electron-nucleus cusp), we have here plotted r1r2ψHF(r1, r2). The

dashed line corresponds to r12 = 0. The derivative of the wavefunction with respect to changing r12
corresponds to the slope of curves which are perpendicular to this line. . Because the wavefunction

is symmetric with respect to interchange (r1 ↔ r2), the derivative ∂ψ/∂r12 of this product of

one-electron functions vanishes everywhere along the line r12 = 0.

This can be done, but convergence is slow.

Explicit inclusion of a dependence on rij in the variational wavefunction can accelerate

this convergence. This is the basis of the so-called “explicitly correlated” (R12/F12) methods

[L. Kong, F. A. Bischoff, and E. F. Valeev, Chem. Rev. 112 75, 2012, dx.doi.org/10.1021/cr200204r]

which have significantly increased the speed of calculations of electronic energy.

G. Spin states of two-electron systems

In the discussion so far, we have ignored the spin of the electron. The electronic Hamilto-

nian [Eq. (15)] does not include the spin. Thus, a complete wavefunction including the spin

http://dx.doi.org/10.1021/cr200204r
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can be written by multiplying a spatial wavefunction of the form 1s(1)1s(2) by a component

describing the spin of the electrons, namely

Ψ(1, 2) = 1s(1)1s(2) |S(1, 2)〉 . (43)

Here, the function “1s(r)” could designate either the single-exponential of Eq. (25) or a more

general one-electron orbital, of spherical (s) symmetry, such as that defined by Eq. (29). This

could be the Hartree-Fock 1s orbital defined by Eq. (27). Each electron has a spin of 1/2.

The spin wavefunction of the electron can be written as |sms〉, where the projection quantum

number is ms = ±1/2. The spin wavefunction for two electrons can be obtained by vector

coupling the spin-wavefunction of each electron.

In quantum mechanics two angular momenta ~j1 and ~j2 can be coupled to form a state of

angular momentum j, with |j1 − j2| ≤ j ≤ j1 + j2. Thus, the total spin for the two-electron

system can be either S = 0 or S = 1. The projection quantum numbers MS can be only

0 for S = 0, but −1, 0,+1 for S = 1. Since the total projection quantum number is the

sum of the projection quantum numbers for each of the two electrons, the wavefunction for

S = 1,MS = 1 must be (to within an arbitrary phase)

|S = 1,MS = 1〉 = |s1 = 1/2, ms1 = 1/2〉|s2 = 1/2, ms2 = 1/2〉

To simplify the notation, we write this as

|11〉 = |1
2
1
2
〉

Here we have suppressed the values of s1 and s2, which are always 1/2, and designated

the so-called “uncoupled” state, in which the ms quantum numbers are specified for each

electron, with the general notation |ms1ms2〉.

Now, the wavefunction for the coupled state with S = 1,MS = 0 can be obtained by the

general angular momentum lowering operator. This is

j−|jmj〉 = [j(j + 1)−m(m− 1)]1/2|j,m− 1〉
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or, in the particular case where S = 1

S−|11〉 = [1× 2− 1× 0]1/2|10〉 = 21/2|10 >

or, reversing the order

|10〉 = 2−1/2|11〉

The lowering operator for the total spin is the sum of the lowering operators for each indi-

vidual spin

S− = s1− + s2− ,

where the effect of s1− on the spin wavefunction for electron 1 is

s1−|12〉 = [1
2
× 3

2
− 1

2
(−1

2
)]1/2|−1

2
〉 = |−1

2
〉

Problem 11 : Use the uncoupled and coupled lowering operators to show that (the

coupled wavefunction is on the left and the uncoupled wavefunction is on the right

|10〉 = 2−1/2(|1
2
, −1

2
〉+ |−1

2
, 1
2
〉) (44)

and

|1− 1〉 = |−1
2
, −1

2
〉

Now, the wavefunction for the sole state with S = 0 and MS = 0 must be a linear

combination of the uncoupled wavefunctions |ms1 = ±1/2, ms2 = ∓1/2〉. In other words

|00〉 = C1,−1|12 , −1
2
〉+ C−1,1|−1

2
, 1
2
〉 (45)

Because the |10〉 and |00〉 states are eigenfunctions of Ŝ2 with different eigenvalues, they must

be orthogonal. Since the functions must also be normalized, we must have C1,−1 = −C−1,1.

This implies that

|00〉 = 2−1/2(|1
2
, −1

2
〉 − |−1

2
, 1
2
〉) (46)
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The electronic Hamiltonian [Eq. (15)] is symmetric with respect to exchanging the labels

of the two electrons. Thus, the wavefunction must be symmetric or antisymmetric with

respect to this operation. We see immediately that the three S = 1 wavefunctions with

MS = +1, 0,−1 are all symmetric, while the S = 0 wavefunction is antisymmetric with

respect to this interchange. The overall two-electron wavefunction which is a product of a

spatial component and a spin-component must be antisymmetric with respect to interchange,

since the electrons are fermions. Thus, in cases where the spatial wavefunction is symmetric

[as, for example, the ground state of the He atom 1s(1)1s(2)], the spin wavefunction must

be antisymmetric. Hence, the ground state of the He atom must be a S = 0 state. This is

called a singlet state, because the projection degeneracy of the spin wavefunction, 2MS +1,

is equal to 1.

H. Excited states of the He atom

Although the ground state of He must be a singlet, the same is not true of any of

the excited states. Consider, for example, the 1s2p state, obtained by exciting one of the

electrons to the 2p state. This transition is analagous to the Lyman α transition in the H

atom. There are four possible wavefunctions, which are both antisymmetric with respect to

particle exchange. The first is the non-degenerate (singlet) state

∣

∣

11s2p
〉

= 2−1/2[1s(1)2p(2) + 2p(1)1s(2)]|00〉

The second is for the triplet state, which is triply degenerate, namely

∣

∣

31s2p
〉

= 2−1/2[1s(1)2p(2)− 2p(1)1s(2)]|11〉

In both cases, the ket on the right-hand-side is the coupled |SMS〉 spin function.

The expectation value of the Hamiltonian [Eq. (15)] in these states is

〈

1(3)1s2p
∣

∣H(1, 2)
∣

∣

1(3)1s2p
〉

= 〈1s|h|1s〉+ 〈2p|h|2p〉+ [1s2|2p2]± [1s2p|2p1s] (47)

where the + sign applies to the singlet state and the – sign, to the triplet state. As might be

anticipated, the expectation value of the energy is the one-electron energy of each electron,
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one described by a 1s orbital and the other, by a 2p orbital. In addition, the two electrons

repel one-another, which contributes the [1s2|2p2] repulsion term, which is the averaged

Coulomb interaction between an electron whose probability distribution is 1s2 and an elec-

tron whose probability distribution is 2p2. Finally, there is the exchange term [1s2p|2p1s].
This is a quantum term, which arises because of the requirement that the electrons be

indistinguishable.

The exchange term (or “exchange integral”) is the self-Coulomb-repulsion of the overlap

1s(1)2p(1) charge density. Since this self-repulsion will be a positive quantity, the triplet

state will lie lower than the singlet state. This will be true for all the 1snp excited states of

He. However, since the np orbitals become more and more diffuse as n increases, the overlap

charge density will 1s(1)np(1) will become smaller and smaller, and hence the [1snp|np1s]
exchange integral will become smaller and smaller as n increases. Consequently, the singlet

triplet splitting will decrease as the principal quantum number increases.

Problem 12

Consider the 1s2p state of a two-electron atom or ion (He, Li+, Be++, B+++). In these

systems you have one electron that is close to the nucleus and sees the full nuclear

charge while the other electron is far away and sees only a screened nuclear charge

of Z = 1. Assume that the 1s and 2p functions are simple hydrogenic orbitals with

screening constants ζs and ζp.

Use this simple picture to estimate for these four two-electron systems

(a) The ζs and ζp screening constants

(b) The energy (in cm−1) of the 1s2p → 1s3p transitions. Compare you answers with

the experimental numbers from the NIST tables. Note: the experimental triplet

1snp states has three spin-orbit components, with slightly different energies. For

simplicity, assume the energy is equal to that of the component with J=2.

(c) From Eq. (47) we see that the splitting between the triplet and singlet 1s2p states is

twice the two-electron exchange integral

∆E31 ≡ E(11s2p)− E(31s2p) = 2[1s2p|2p1s]

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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The value of [1s2p|2p1s] for hydrogenic 1s and 2p orbitals is

[1sζs2pζp|2pζp1sζs] =
7

96
ζ(1 + τ)3(1− τ)5

where

τ = (ζs − ζp)/(ζs + ζp)

ζ =
1

2
(ζs + ζp)

From your result to part (a), estimate this splitting for He, Li+, Be++, B+++ and compare

these estimates with the experimental value of these splittings, which you can get from

the NIST tables.

(d) Finally, use the NIST tables to determine the splitting between the triplet and

singlet 1snp states of He for n = 2 − 6. Plot the results. Plot the experimental triplet-

singlet 1snp splittings for n = 2− 5 for He and Li+.

I. Gaussian orbitals

In application of the Hartree-Fock methodology to many-electron atoms and, especially,

molecules, the calculation of two-electron integrals between functions which decrease expo-

nentially in r is very time-consuming. Much faster calculations can be achieved by expansion

of the electronic wavefunction as a linear combination of Gaussian functions

R(r) =
∑

j

Cj exp(−αjr
2) (48)

rather than the exponential hydrogenic (often called “Slater”) orbitals

R(r) =
∑

j

Cj exp(−ζjr) (49)

Consider, for simplicity, the hydrogen atom. We will expand the 1s wavefunction in terms

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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of Gaussian orbitals. The simplest case will be to truncate the series at one term, namely

R(r) ≈ Nα exp(−αr2) (50)

where Nα is the normalization constant, chosen to satisfy Eq. (10).

Problem 13

Determine the value of this normalization constant Nα, so that the Gaussian 1s function

is normalized, namely [Eq. (10)]

〈1sα|1sα〉 =
∫ ∞

0

R(r)2r2dr = 1 (51)

Then, use Matlab to determine an expression for the overlap integral between two

Gaussian functions with differing exponential factors

Sα′α ≡ 〈1s(α′)|1s(α)〉 =
∫ ∞

0

Rα(r)Rα′(r)r2dr (52)

Hint: To check your work, in the limit that the two screening constants are equal

lim
α′=α

Sα′α = 1

To determine the energy of the H atom with a single Gaussian approximation to the 1s

orbital, is is easiest to replace the Gaussian R(r) [Eq. (50)] with G(r) = rR(r) and then

evaluate the expectation of the one-electron Hamiltonian of Eq. (13) with Z = 1, integrating

from 0 to ∞ with an length element of just dr2 (no factor of r2). You can use the symbolic

algebra feature of Matlab to evaluate the derivatives.

syms r

syms alpha

oness=exp(-alpha*r*r)

diff(r^2*diff(oness))/r^2)
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ans =

-((6*alpha*r^2)/exp(alpha*r^2) - (4*alpha^2*r^4)/exp(alpha*r^2))/r^2

simplify(ans)

ans = (2*alpha*(2*alpha*r^2 - 3))/exp(alpha*r^2)

Problem 14 : Assume that the H atom 1s orbital [Eq. (11)] is described by the single

Gaussian of Eq. (50). In problem 13 have already determined the normalization constant

in terms of α. Then, determine an expression for the variational energy of the H atom

as a function of α. At what value of α is the energy lowest? What is the value of this

best variational energy? Remember that the variational principle guarantees that this

value should always be greater than the true electronic energy of the 1s electron in the

H atom, namely –0.5 Hartree.

Let’s compare the Gaussian approximation to the 1s orbital with g(r) for the true 1s

orbital of H, which is

g1s(r) = 2r exp(−r) (53)

This expression is normalized, so that
∫∞

0
g1s(r)

2dr = 1.

Problem 15 :

(a) Plot your best single-Gaussian function (Prof. 14) compared to the true 1s orbital.

Make sure to label your axes!

(b) A variational calculation was done with a three-Gaussian approximation to the 1s

orbital

g1s ≈
N
∑

i=1

CiNir exp(−αir
2) (54)

with

α = [4.502, 0.681, and 0.151]

The variational energy is –0.49698 and expansion coefficients were found to be:

C = {0.070426622, 0.408558457, 0.647278802}
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Plot this 3-function Gaussian approximation to the 1s orbital and compare it to the

exact 1s function.

J. Coupling of two angular momenta

For reference, the angular momentum raising and lowering operators are defined by

±|jm〉 = [j(j + 1)−m(m∓ 1)]1/2 |j,m± 1〉 . (55)

Now, consider two angular momenta ~j1 and ~j2. The so-called “uncoupled states” are the

products of the angular momentum states associated with each operator, namely

|j1m1j2m2〉 ≡ |j1m1〉 |j2m2〉

There are (2j1+1)(2j2+1) of these product states, each of which is an eigenfunction of the

operators j1z , j
2
1 , j2z , j

2
2 .

Now consider the total angular momentum ~J = ~j1 +~j2 and its projection Jz = j1z + j2z.

Since any component of ~j1, as well as its square, commutes with any component of ~j2,

because they operate in different spaces, you can show that j21 and j22 commute with both

Jz and J2. However,

J2 = j21 + j22 + 2~j1 ·~j2 = j22 + j22 + 2 (j1xj2x + j1yj2y + j1zj2z)

Since j1z does not commute with either j1x or with j1y, it is clear that neither j1z nor j2z

commute with J2. We can thus replace the four commuting operators j1z, j
2
1 , j2z , j

2
2 with

another set of four commuting operators J2, Jz, j2z, j
2
2 . The eigenfunctions of this latter

set of operators are called “coupled states” and are designated |j1j2JM〉. The two sets of

eigenfunctions must be related by an orthogonal transformation, namely

|j1j2JM〉 =
∑

m1 m2

Cj1m1j2m2,JM |j1m1j2m2〉 ≡
∑

m1 m2

(j1m1j2m2 |JM) |j1m1j2m2〉 (56)
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The coefficients which appear on the right-hand side are called Clebsch-Gordan (CG) coefficients,

and are designated (j1m1j2m2 |JM). Because ~J = ~j1 + ~j2, it follows that Jz = j1z + j2z.

It then follows that M = m1 +m2, in other words, the projection of the total spin equals

the sum of the individual projection quantum numbers. This relation can be ensured by

requiring that the CG coefficients vanish unless m1 + m2 = M . Further, we assume that

both the coupled and uncoupled states are normalized and orthogonal, in other words

〈j1j2J ′M ′ |j1j2JM〉 = δJ,J ′δM,M ′ (57)

and

〈j1m′
1j2m

′
2 |j1m2j2m2〉 = δm1,m′

1
δm2,m′

2
(58)

These two equations, along with Eq. (56), can be used to derive the two orthogonality

relations for the CG coefficients:

∑

m1,m2

(j1m1j2m2 |JM) (j1m1j2m2 |J ′M ′) = δJ,J ′δM,M ′

and
∑

m1,m2

(j1m1j2m2 |JM) (j1m1j2m2 |J ′M ′) = δJ,J ′δM,M ′

and
∑

J,M

(j1m1j2m2 |JM) (j1m
′
1j2m

′
2 |JM) = δm1,m′

1
δm2,m′

2

Because the transformation of Eq. (56) is an orthogonal transformation, its inverse is just

the transpose of the matrix of CG coefficients, assuming that they are real

Consider, for illustration, the case where j1 = 2 and j2 = 1. The following figures shows all

the possible values ofm1 andm2. Each filled circle indicates one of the |j1m1j2m2〉 uncoupled
states. There are (2j1 + 1)(2j2 + 1) = 15 of these. The largest value of M = m1 +m2 is

3. The next value is M = 2 and so forth. The diagonal red lines connect all the possible

states for each indicated value of M . There is one state for M = 3, two for M = 2, three

for M = 1 and so forth.

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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FIG. 6. Illustration of all uncoupled states for j1 = 2 and j2 = 1.

K. Determination of Clebsch-Gordan coefficients

To determine the Clebsch-Gordan coefficients we start with the largest value of J and

M . As we can see in Fig. 6, this is J = j1 + j2 (J = 3 in the example shown) and

M = j1 + j2. Since there is only one uncoupled state which satisfies these criteria – the

so-called “stretched” state – Eq. (56) reduces to

|j1j2, J = j1 + j2,M = j1 + j2〉c = (j1j1j2j2 |j1 + j2, j1 + j2) |j1j1j2j2〉u (59)

Here the subscripts c and u will designate the coupled and uncoupled states. Since both the

uncoupled and coupled states are assumed normalized, the coefficient has to equal one (at

least in magnitude). Thus we can say, choosing the phase factor to be +1,

(j1j1j2j2 |j1 + j2, j1 + j2) = 1

Now, let us operate on both the left and the right hand sides of Eq. (59) with the lowering

operator J− = j1−+j2−. This gives for the operation of J− on the coupled state (the left-hand

side)

[J(J + 1)−M(M − 1)]1/2 |j1j2, J = j1 + j2,M = j1 + j2 − 1〉c
= [(j1 + j2)(j1 + j2 + 1)− (j1 + j2)(j1 + j2 − 1)]1/2 |j1j2, J = j1 + j2,M = j1 + j2 − 1〉c
= [2(j1 + j2)]

1/2 |j1j2, j1 + j2, j1 + j2 − 1〉c (60)

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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and, for the action of J− on the uncoupled state (the right-hand side)

J− |j1j1j2j2〉u = (j1− + j2−) |j1j1j2j2〉u
= [j1(j1 + 1) + j1(j1 − 1)]1/2 |j1, j1 − 1, j2j2〉u + [j2(j2 + 1) + j2(j2 − 1)]1/2 |j1j1j2, j2 − 1〉u
=

√

2j1 |j1, j1 − 1, j2j2〉u +
√

2j2 |j1j1j2, j2 − 1〉u (61)

Equating the two previous equations gives

[2(j1 + j2)]
1/2 |j1j2, j1 + j2, j1 + j2 − 1〉c =

√

2j1 |j1, j1 − 1, j2j2〉u +
√

2j2 |j1j1j2, j2 − 1〉u

or

|j1j2, j1 + j2, j1 + j2 − 1〉c =
[

j1
j1 + j2

]1/2

|j1, j1 − 1, j2j2〉u +
[

j2
j1 + j2

]1/2

|j1j1j2, j2 − 1〉u
(62)

The two terms on the right-hand side must be the CG coefficients as defined in Eq. (56).

Thus, we see that

(j1, j1 − 1, j2, j2 |j1 + j2, j1 + j2 − 1) =

[

j1
j1 + j2

]1/2

and

(j1, j1, j2, j2 − 1 |j1 + j2, j1 + j2 − 1) =

[

j2
j1 + j2

]1/2

Explicitly, in the case where j1 = 2 and j2 = 1 (as in Fig. 6), we have

|2132〉c = (2111|32)|2111〉u + (2210|32)|2210〉u
= (2/3)1/2|2111〉u + (1/3)1/2|2210〉u (63)

By continuing the application of J− = j1− + j2−, we can generate all the GC coefficients for

J = j1+ j2 for all allowed values ofM (M = j1+ j2−2, j1+ j2−3, ...,−j1− j2+1,−j1− j2).

Now, we need the Clebsch-Gordan coefficients for the next lower value of J , namely

J = j1 + j2 − 1. For this value of J , the highest value of M is j1 + j2 − 1. In this case,

http://en.wikipedia.org/wiki/Clebsch-Gordan_coefficients
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Eq. (56) reads

|j1j2, j1 + j2 − 1, j1 + j2 − 1〉c = (j1j1 − 1j2j2 |j1 + j2 − 1, j1 + j2 − 1) |j1, j1 − 1, j2j2〉u
+ (j1j1j2j2 − 1 |j1 + j2 − 1, j1 + j2 − 1) |j1j1j2, j2 − 1〉u(64)

Now, the left hand sides of Eqs. (62) and (64) must be orthogonal, because J = j1 + j2

for the first and J = j1+ j2−1. Consequently, the right hand sides must also be orthogonal.

Since the functions must also be normalized, it is clear that

(j1j1 − 1j2j2 |j1 + j2 − 1, j1 + j2 − 1) = ±
[

j2
j1 + j2

]1/2

(65)

and

(j1j1j2j2 − 1 |j1 + j2 − 1, j1 + j2 − 1) = ∓
[

j1
j1 + j2

]1/2

(66)

To make things more concrete, in the case where j1 = 2 and j2 = 1 we have

|2122〉c = (2111|22)|2111〉u + (2210|22)|2210〉u
= ±(1/3)1/2|2111〉u ∓ (2/3)1/2|2210〉u (67)

The sign is established by the so-called Condon and Shortley phase convention that all

matrix elements of j1z, which are non-diagonal in J , are real and non-negative. [2] Consider,

then, the matrix element

〈2132| l1z |2122〉u = ±21/2

3
〈2111|l1z|2111〉u ∓

21/2

3
〈2210|l1z|2210〉u

∓2

3
〈2111|l1z|2210〉u ±

1

3
〈2210|l1z|2111〉u (68)

Now, we know that (suppressing the h̄) l1z|2111〉u = |2111〉u and l1z|2210〉u = 2|2110〉u.
Thus we find

〈2111|l1z|2111〉u = +1 ,

〈2210|l1z|2210〉u = +2 ,

〈2210|l1z|2111〉u = 〈2210|2111〉u = 0 ,
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and

〈2111|l1z|2210〉u = 〈2111|2211〉u = 0 ,

Thus, we find that

〈2132| l1z |2122〉u = ±21/2

3
∓ 2

21/2

3
= ∓21/2

3
(69)

Consequently, for the Condon-Shortley phase convention to be satisfied we have to chose

the lower sign in Eqs. (65) and (66), so that

(2111|22) = −
(

1

3

)1/2

and

(2210|22) = +

(

2

3

)1/2

Problem 16 You know that |2133〉c (the stretched state) = |2211〉u. The expression for

|2132〉c is given by Eq. (63). By repeated application of the lowering operator, generate

the CG coefficients for j1 = 2, j2 = 1, J = 3,M for M = 1 and M = 0.

Problem 17 For j1 = 2 and j2 = 1 the lowest allowed value of J is 1. In problem 16

you have obtained the expression for the |2131〉c state in terms of uncoupled states. The

comparable expression for the |2121〉c state is

|2121〉c = −2−1/2|2011〉u + 6−1/2|2110〉u + 3−1/2|221− 1〉u

For J = 1, the comparable expression would be

|2121〉c = a|2011〉u + b|2110〉u + c|221− 1〉u

By requiring the state |2111〉c to be (a) normalized and (b) orthogonal to the J = 3 and

J = 2 states with M = 1, you can determine the values of the coefficients a, b, and c,

to within an arbitrary sign. To fix the sign, you can impose the Condon-Shortley phase

convention, requiring that

〈2121|l1z|2111〉c ≥ 0
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The coefficients a, b, and c, are, in fact, the CG coefficients (2011|11), (2110|11), and
(221− 1|11). Hint: the value of (2011|11) is (1/10)1/2.

L. Multi-electron atoms

1. Permutation symmetry

For an N -electron atomic or molecular system with N ≥ 2, the Hamiltonian is the

extension of Eq. (15), namely

H(r1, . . . , rN) =

N
∑

i=1

h(~ri) +

N−1
∑

i=1

N
∑

j=i+1

1

rij

where rij = |~ri − ~rj |. The Hamiltonian is a sum of one-electron terms (kinetic energy plus

the attraction of the electron to the nucleus) plus a sum of pairwise repulsions between the

electrons. The Hamiltonian is unchanged by an exchange of the labels of any two electrons.

This is called a permutation. The permutation operator P̂ij exchanges the labels of electrons

i and j. Since the Hamiltonian commutes with the permutation operator, the wave function

can be simultaneously an eigenfunction of Ĥ and P̂ . Since electrons are fermions, the

eigenrelation must be

P̂ijΨ(~r1, . . . , ~ri, . . . , ~rj, . . . , rN) = −Ψ(~r1, . . . , ~rj, . . . , ~ri, . . . , rN) (70)

For an N -electron system, as in the case of the He atom, a simple approximation to the

electronic wavefunction is as a product of one-electron functions φ1(~r1). . .φN (~rN). In fact, it

is this simple product-of-one-electron-functions approximation that enables all of chemistry

to visualize and understand the electronic structure of atoms and molecules. In addition

to the spatial coordinates of each electron ~r, we need to specify its spin. We designate by

the name “spin-orbital” the product of the spatial function φi(~r) and a spin eigenfunction.

Consider, then, a set of N one-electron spin-orbitals {ϕ1, ϕ2, ...ϕN−1, ϕN}, where

ϕi ≡ φi(~r) |sms〉 .
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Here |sms〉 designates the total spin s and its projection ms. For an electron s = 1/2 and

ms = ±1/2. You will often see the compact notation

ϕi ≡ φi(~r)

or

ϕi ≡ φ̄i(~r)

Here the superscript bar indicates ms = −1/2 (down spin) and the absence of a bar indicates

ms = +1/2 (up spin). We assume that these functions are orthogonal and normalized, so

that
∫

ϕ∗
iϕjdV ds = δij. Note that we are integrating over both the spatial and spin degrees

of freedom of the electron. The simple product-of-one-electron-functions approximation of

the N -electron wave function is, mathematically.

Ψ(~r1, . . . , ~ri, . . . , ~rj, . . . , rN) = φ1(~r1)φ2(~r2) . . . φN(~rN) (71)

But this function doesn’t satisfy fermion permutation requirement of Eq. (70). For example,

suppose we permute labels 1 and 2. Then

P̂12φ1(~r1)φ2(~r2) . . . φN(~rN) = φ2(~r1)φ1(~r2) . . . φN(~rN)

This does not satisfy Eq. (70). On the left-hand-side, electron 1 is associated with spin-

orbital 1 and electron 2 with spin-orbital 2. On the right-hand-side, electron 1 is associated

with spin-orbital 2 while electron 2 is associated with spin-orbital 1. This is not the same

thing, even if we introduce a minus sign.

In the case of the He atom (Sec. IG), to satisfy the requirement of permutation anti-

symmetry we expressed the electronic wave function as a product of a symmetric spatial

function multiplied by an antisymmetric spin function, or vice versa. This separation is

unfortunately not possible for systems with more than 2 electrons.
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2. Slater determinants – Li atom

Luckily, there is a straight forward modification of the simple product [Eq. (71)] which

does satisfy the required permutation antisymmetry. This is done by writing the wave

function as a “Slater determinant”. We’ll use the Li atom as an illustration. The electron

configuration is 1s22s, or, in terms of spin-orbitals 1s1s̄2s. The Slater determinantal notation

is

Ψ(~r1, ~r2, ~r3) ≡ Ψ(1, 2, 3) =
1√
6

∣

∣

∣

∣

∣

∣

∣

∣

∣

1s(1) 1s̄(1) 2s(1)

1s(2) 1s̄(2) 2s(2)

1s(3) 1s̄(3) 2s(3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(72)

where | | denotes a determinant. We’ve also simplified the notation a bit by replacing the

electronic coordinates ~r1 ≡ {r1, θ1, φ1} by the single index “1”. Expanding the determinant

will give 6 terms, involving all the possible permutation of the three electrons between the

three spin-orbitals. We have

Ψ(1, 2, 3) = 6−1/2[1s(1)1̄s(2)2s(3) + 1s(3)1̄s(1)2s(2) + 1s(2)1̄s(3)2s(1)

−1s(3)1̄s(2)2s(1)− 1s(2)1̄s(1)2s(3)− 1s(1)1̄s(3)2s(2)] (73)

Note that all terms involving a single permutation appear with a minus sign and all terms

involving a double permutation appear with a positive sign.

The permutation symmetry is guaranteed by the choice of a determinant to represent

the wave function: Interchanging the labels of any two electrons involves interchanging two

rows of the determinant in Eq. (72). For a determinant, interchanging any two rows changes

the sign of the determinant.

For the Li atom the electronic Hamiltonian is

Ĥ(1, 2, 3) = h(1) + h(2) + h(3) +
1

r12
+

1

r13
+

1

r23

The variational energy is 〈Ψ(1, 2, 3)
∣

∣

∣
Ĥ(1, 2, 3)

∣

∣

∣
Ψ(1, 2, 3)〉. From Eq. (73) we see that this

will involve 6 × 6 = 36 terms. The Hamiltonian is a sum of one-electron and two-electron

terms. We’ll assume that the spin-orbitals are orthogonal (and normalized). If that’s the

case, then the one electron terms will contribute only diagonally, in other words when
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the occupancy of the spin-orbitals is identical on the left and right hand sides. That’s

because any permutation involves a switch of two indices. So for the one electron terms,

the orthogonality of the 2nd index will cause the term to vanish. For example, consider the

term

〈1s(1)1̄s(2)2s(3) | h(1) | P̂12[1s(1)1̄s(2)2s(3)]〉 = 〈1s(1)1̄s(2)2s(3) | h(1) | 1s(2)1̄s(1)2s(3)〉

=

∫

1s(1)∗h(1)1̄s(1)dV1ds1

∫

1̄s(2)∗1s(2)dV2ds2

∫

2s(3)∗2s(3)dV3ds3 (74)

The 2nd integral will vanish since the spin-projection quantum number differs in the bra

and ket components. There will be 6 diagonal terms, which will each give the same result.

But the normalization constant is 6−1/2. So the square of this normalization constant will

exactly cancel the 6-fold redundancy.

Similarly, the two-electron terms will contribute to the 6 diagonal terms and to the terms

in which the same electron pair is permuted on the left- and right- hand sides. The net

result is that the expectation value of the Hamiltonian is

〈

Ψ(1, 2, 3)
∣

∣

∣
Ĥ(1, 2, 3)

∣

∣

∣
Ψ(1, 2, 3)

〉

= 2h1s + h2s + [1s1s|1s1s] + 2 [1s1s|2s2s]− [1s2s|2s1s]
(75)

where

h1s =

∫

1s(1)h(1)1s(1)dτ1 =

∫

1s(2)h(2)1s(2)dτ2 =

∫

1s(3)h(3)1s(3)dτ3 (76)

and, similarly, for h2s. We have introduced here a general, compact notation for the two-

electron integrals

[ϕϕ |χχ ] =
∫ ∫

ϕ(1)∗ϕ(1)
1

r12
χ(2)∗χ (2) dτ1dτ2 (77)

and

[ϕχ |χϕ ] =
∫ ∫

ϕ(1)∗χ(1)
1

r12
χ(2)∗ϕ (2) dτ1dτ2 (78)

The expression for the matrix element of the Hamiltonian in Eq. (75) has a simple physical

interpretation. In the Li atom there are two electrons in the 1s orbital and one electron in

the 2s orbital. Each electron has a one-electron energy (kinetic energy plus attraction to

the nucleus). Thus, the one-electron contribution is 2h1s + h2s (because there are two 1s

electrons, there is a factor of 2 in front of the h1s term.
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In addition, every electron is repelled by every other electron. There is one 1s − 1s

repulsion and two 1s − 2s repulsions. Thus, Eq. (75) contains a total Coulomb repulsion

energy of [1s1s|1s1s] + 2[1s1s|2s2s]. Finally, there is a purely quantum correction to the

energy, which is a consequence of the requirement that the wave function be antisymmetric.

This correction is: for every pair of electrons that have the same spin, there is a negative

so-called “exchange” contribution to the energy, namely [ϕχ|χϕ], or, specifically in the case

of Li, [1s2s|2s1s].

Problem 18 A simpler notation for the determinantal wave function of Eq. (72) is

ψ(1, 2, 3) = |1s1̄s2s| (79)

Here the vertical bars denote a Slater determinant with normalization factor of (N !−1/2),

and we list the spin-orbitals which are occupied.

(a) Write down an expression similar to Eq. (79) for the electronic wave function of the

B atom.

(b) Then give an expression of the electronic energy of the B atom similar to Eq. (75).

3. Slater Determinants – General

In general, for N electrons we’ll have an N ×N determinant,

Ψ(1, 2, . . . , N) = (N !)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(1) φ2(1) · · · φN(1)

φ1(2) φ2(2) · · · φN(2)
...

...
...

...

φ1(N) φ2(N) · · · φN(N)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(80)

Or, following Eq. (79), we can simplify this notation to

Ψ(1, 2, . . . , N) = |φ1φ2 · · ·φN | (81)
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In the Appendix on Slater Determinants we discuss how the energy is

〈Ψ(1, . . . , N)|Ĥ(1, . . . , N)|Ψ(1, . . . , N)〉 =
N
∑

i=1

〈φi|ĥ|φi〉+
N−1
∑

i=1

N
∑

j=2

(

[φiφi|φjφj]− δmsi
,msj

[φiφj |φjφi]
)

=
N
∑

i=1

hi +
N−1
∑

i=1

N
∑

j=2

(

[φ2
i |φ2

j ]− δmsi
,msj

[φiφj |φjφi]
)

(82)

Again,

1. Every electron has a one electron energy, so there is an hi term for each spin orbital.

2. All pairs of electrons repel one another, so that there are N(N − 1)/2 [φ2
i |φ2

j ] terms.

3. For every pair of electrons that have the same spin, there is a negative exchange term

−[φiφj|φjφi].

4. Slater determinants – C atom

Now, consider the carbon atom (1s22s22p2). Here two of the six 2p orbitals are filled.

As we will discuss in more detail, there is more than one 1s22s22p2 electronic states, which

differ in energy. At a basic level, there are three 2p orbitals and two (ms = ±1/2) possible

spin states for each electron. Thus there are 2×3 = 6 possible spin orbitals. By the Pauli

exclusion principle at most one electron can be assigned to each spin-orbital. The first

electron can occupy one of 6 spin orbitals and the second electron, any of the remaining

5. Thus there are 30 possibilities. Because the two electrons are indistinguishable, we can

eliminate 1/2 of these by symmetry, which leaves 15. Not all correspond to states of different

energies. Many of the 15 possible electron assignments are degenerate. The easiest way to

sort this out is by application of the tableau method.

From this supplemental chapter, we deduce that the 15 different electron assignments

correspond to nine 3P states with L = 1, S = 1, five 1D states with L = 1, S = 0 and one

1S state with L = 0, S = 0. We can use a simplified Slater determinantal notation for the

wave functions for each of these states, which we designate 2S+1LML,MS
. For example, the

3P state with ML = 1 and MS = 1 corresponds to 1s22s22p12p0, where the spins of both 2p

http://www2.chem.umd.edu/groups/alexander/chem691/Slater_determinants.pdf
http://www2.chem.umd.edu/groups/alexander/chem691/tableau_method.pdf
http://www2.chem.umd.edu/groups/alexander/chem691/tableau_method.pdf
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electrons are ms = 1/2. The Slater determinant for this state is

∣

∣

3P11

〉

= |1s1̄s2s2̄s2p02p1| (83)

For simplicity, we can suppress the 1s and 2s spin-orbitals and write this as

∣

∣

3P11

〉

= |p1p0| (84)

The wavefunctions for the other (2S+1)LML,MS
states can be obtained by application of the

S− and L− lowering operators. Each of these is the sum of the raising or lowering operators

for each of the electrons. In general

L̂− =
N
∑

i=1

l̂i−

and similarly for L̂+, Ŝ− and Ŝ+. Thus, for example, for the 2p2 C atom

L−

∣

∣

3P11

〉

= (l1− + l2−) |p1p0| (85)

Now, the general effect of a lowering operator is [see Eq. (550]

l−|lml〉 = [l(l + 1)−ml(ml − 1)]1/2

For example l1− |p1p0| = 21/2 |p0p0|. This vanishes, because the 5th and 6th columns of the

Slater determinant are equal and any determinant vanishes if two columns are the same.

However, l2− |p1p0| = 21/2 |p1p1|, which does not vanish. Similarly, L− |3P11〉 = 21/2 |3P01〉.
Thus, we find that

∣

∣

3P01

〉

= |p1p−1| (86)

Note that we don’t need to operate on the 1s or 2s spin-orbitals with the lowering operators

because l− operating on an s function (l = 0) gives zero and s− gives either zero or leads to

two identical columns.
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Problem 19 : (a) Determine the determinantal wavefunctions for the other C 3P states.

Write these wavefunctions in the simplified |pipj| notation of Eqs. (86) and (87). The

other 3P wavefunctions can be generated, as above, by application of L− and S−.

(b) Do the same for the 1D wavefunctions. You can generate these starting with

∣

∣

1D20

〉

= |p1p̄1| (87)

and then using L−. Note, that the wavefunctions forML and/orMS < 0 can be generated

almost by inspection from those with ML and/or MS > 0.

Here is an example to help you solve this problem:

∣

∣

3P00

〉

= S−

∣

∣

3P01

〉

= (s1− + s2−)|p1p−1|

= N (|p̄1p−1|+ |p1p̄−1|) = N (−|p−1p̄1|+ |p1p̄−1|)

= 2−1/2 (−|p−1p̄1|+ |p1p̄−1|) (88)

Here, the normalization constant can be obtained from the applications of S− on the left,

which gives a factor of [S(S+1)−MS(MS−1)]1/2 =
√
2 on the left, and the applications

of s1−+s2− on the right, each of which give a factor of [s(s+1)−ms(ms−1)]1/2 = 1 on the

right. Alternatively, and more simply, N is fixed so the the sum of Slater determinants

is normalized, namely [for Eq. (88)], N = 2−1/2.

Similarly, we obtain

∣

∣

1D10

〉

= L−

∣

∣

1D20

〉

= (l1− + l2−)|p1p̄1| = 2−1/2 (|p0p̄1|+ |p1p̄0|)

and

∣

∣

1D00

〉

= L−

∣

∣

1D10

〉

= N (|p−1p̄1|+ |p0p̄0|+ |p0p̄0|+ |p1p̄−1|)

= 6−1/2 (|p−1p̄1|+ |p1p̄−1|+ 2|p0p̄0|) (89)

Here, the normalization constant has to be 1/
√
6.

The single 1S00 wavefunction (only ML = MS = 0 is allowed) must also be a linear

combination of the three Slater determinants (|p1p̄−1|, |p−1p̄1|, and |p0p̄0|) which have
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MS = 0 and ML = 0. We have

∣

∣

1S00

〉

= a|p1p̄−1|+ b|p−1p̄1|+ c|p0p̄0| (90)

The coefficients must be chosen so that this function is orthogonal to the Slater deter-

minant expansion of the wave functions for the |1D00〉 and |3P00〉 states [Eqs. (89) and

(88).

(c) What are the values of a, b, and c?

5. Conversion from definite-M to Cartesian orbitals

It is often convenient to express these wavefunctions in terms of the real (Cartesian) px

and py orbitals rather than the complex p1 and p−1 orbitals. Remember that pz = p0. Since

(note the minus sign for px, this arises because of the phase conventions of the spherical

harmonics)

p1 = −2−1/2 (px + ipy) and p−1 = 2−1/2 (px − ipy) (91)

we can transform all the wavefunctions into representations in terms of the Cartesian spin-

orbitals. For example

∣

∣

1D20

〉

= |p1p̄1| = 2−1 [|pxp̄x| − |pyp̄y|+ i |pxp̄y|+ i |pyp̄x|] (92)

Similarly, we find for the 1D state with ML = −2

∣

∣

1D−2,0

〉

= |p−1p̄−1| = 2−1 [|pxp̄x| − |pyp̄y| − i |pxp̄y| − i |pyp̄x|] (93)

If you take the normalized plus and minus linear combination of these two states, you obtain

∣

∣

1Dx2−y2
〉

= 2−1/2
(
∣

∣

1D20

〉

+
∣

∣

1D−2,0

〉)

= 2−1/2 [|pxp̄x| − |pyp̄y|] = 2−1/2[ |xx̄| − |yȳ| ] (94)
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and

∣

∣

1Dxy

〉

= −i2−1/2
(
∣

∣

1D20

〉

−
∣

∣

1D−2,0

〉)

= 2−1/2 [|pxp̄y|+ |pyp̄x|] = 2−1/2[ |xȳ|+ |yx̄| ] (95)

You can show that the energy of the 1Dx2−y2 state is

E(1Dx2−y2) = 2ε1s + 2ε2s + 2ε2p + [1s2|1s2] + [2s2|2s2] + 4[1s2|2s2] + 4[1s2|2p2x] + 4[2s2|2p2x]

−2[1s2s|2s1s]− 2[1s2px|2px1s]− 2[2s2px|2px2s]

+[2p2x|2p2x]− [2px2py|2py2px] (96)

Note that [a2|b2] = [b2|a2]. Also, because the x, y, and z directions are equivalent

[s2|2p2x] = [s2|2p2y] (97)

and

[s2px|2pxs] = [s2py|2pys]

Finally,

[1s2px|2py1s] = [2s2px|2py2s] = 0

This vanishing reflects the fact that the product of an s and a Cartesian 2px orbital is

antisymmetric with respect for reflection in the yz plane, which the product of an s and a

2py orbital is symmetric with respect to the same reflection.

The contribution of the 1s and 2s electrons to the 15 states of the C atom are all identical

(as you might expect, because of the spherical symmetry of the s orbitals. Thus, you could

simplify Eq. (98) to read

E(1Dx2−y2) = EC + [2p2x|2p2x]− [2px2py|2py2px] = EC + [x2|x2]− [xy|yx] (98)

where

EC = 2ε1s + 2ε2s + 2ε2p + [1s2|1s2] + [2s2|2s2] + 4[1s2|2s2] + 2[1s2|2p2x] + 2[2s2|2p2x]

−2[1s2s|2s1s]− 2[1s2px|2px1s]− 2[2s2px|2px2s] (99)
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We see from Eq. (98) that the energy of any of the states of the C atom is equal to a

common value (EC) plus the expectation value of r−1
12 (the electron repulsion) between the

two 2p electrons.

Similarly, from Eq. (95) that the energy of the 1Dxy state is

E(1Dxy) = EC + [x2|y2] + [xy|yx] (100)

Since the energy of the 1D states has to be the same for any value of the Mj projection

(since the Hamiltonian is invariant with respect to your choice of the axis system), all the

Cartesian components of the 1D state will have the same energy. A similar invariance applies

to the 3P states. We can exploit this invariance by equating the energies given in Eqs. (98)

and (100). This gives the relation

[x2|x2]− [xy|yx] = [x2|y2] + [xy|yx] (101)

or

[x2|x2] = [x2|y2] + 2[xy|yx] (102)

This result is reasonable. The coulomb repulsion between two electrons in the same Cartesian

2p will be greater than the repulsion between an electron in a 2px orbital and a 2nd electron

in the 2py orbital.

Problem 20 : There are three states of the C atom with ML = 0 and MS = 0, namely

3P00,
1D00, and

1S00. The determinental wavefunctions for each of these states is given

by Eqs. (88), (89) and (90). We wish to obtain the determinantal wavefunctions for

these three states in terms of the Cartesian p spin-orbitals. To do so it is easiest to first

obtain expressions for the three definite-M Slater determinants withML = 0 andMS=0,

namely

|p0p̄0| = |pzp̄z|

|p1p̄−1| = −1

2
(|(px + ipy)(p̄x − ip̄y)|) =

1

2
(−|pxp̄x| − |pyp̄y| − i|pyp̄x|+ i|pxp̄y|)
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and

|p−1p̄1| = −1

2
(|(px − ipy)(p̄x + ip̄y)|) =

1

2
(−|pxp̄x| − |pyp̄y|+ i|pyp̄x| − i|pxp̄y|)

Consequently, for example, the wave function for the |3P00〉 state [Eq. (88)] state is

∣

∣

3P00

〉

=
1√
2
(−|p−1p̄1|+ |p1p̄−1|) =

i√
2
(|pxp̄y| − |pyp̄x|) (103)

(a) Obtain similar equations for the 1D00 and 1S00 states.

(b) Then, evaluate the two-electron energy of the two 2p electrons in the 3P00,
1D00

and 1S00 states in terms of the basic integrals [x2|x2], [x2|y2], and [xy|yx]. Remember

that

[x2|x2] = [y2|y2] = [z2|z2] (104)

[x2|y2] = [x2|z2] = [y2|z2] and so forth (105)

[xy|yx] = [xz|zy] = [yx|xy] and so forth (106)

and, since the electron density associated with electron 1 has different Cartesian reflection

symmetry compared to the electron density associated with electron 2,

[xy|yz] = [xz|yz] = [zy|yx] = 0 and so forth (107)

To check your results, remember that all five components of the 1D state should have

the same energy, so that the expression you obtain for 〈1Dx2−y2 | Ĥ |1Dx2−y2〉 should equal

the expression for 〈1D00| Ĥ |1D00〉
(c) Finally, predict the relative spacing between the three valence states of an atom

with a 2p2 configuration (such as carbon). The spacing should be similar for Si (...3p2)

and also for O (... 2p4) where there is a double hole (rather than a double occupancy) in

the 2p shell, as well as for S (... 3p4). Use the NIST database to obtain the experimental

spacings for C, O, Si, and S and compare these with your prediction.

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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6. Simplistic description of the C atom

This section contains a simplistic description of the C atom, free of complex orbitals.

From the application of the tableau method described in Sec. I L 4, we know that the 2p2

state of the C atom gives rise to 3P , 1D and 1S electronic states. We have two electrons to

distribute between the pz, px, or py Cartesian 2p orbitals.

3
P state: in the triplet state we cannot have two electrons in the same orbital. Thus,

the allowed electron occupancies are pxpy, pxpz, and pypz. The S = 1 Slater determinants

are |pxpy| and so on. We can designate these states at 3,1Pxy and so on, where the initial

superscript designates 2S + 1,MS.

The expectation value of 1/r12 between the two 2p orbitals is

〈3,1Pxy|
1

r12
|3,1Pxy〉 = [p2x|p2y]− [pxpy|pypx] = [x2|y2]− [xy|yx] (108)

For MS = −1, the determinants are |3,−1Pxy〉 = |p̄xp̄y|, with the same energy. For MS = 0,

the determinants are

|3,0Pxy〉 = 2−1/2 [|pxp̄y| ± |p̄xpy|] (109)

From the rules for the energy of Slater determinants (I L 3), we see that the two electron

energy of the state |3,0Pxy〉 is

〈3,0Pxy|
1

r12
|3,1Pxy〉 = [p2x|p2y]± [pxpy|pypx] = [x2|y2]± [xy|yx] (110)

But this has to be equal to the energy of the 3,1Pxy state [Eq. (108)]. Thus, we have to take

the minus sign in the definition of the 3,0Pxy wavefunction. Note that you can get the same

result by operating on |3,1Pxy〉 by Ŝ− = ŝ1− + ŝ2−.

1
S state The electronic wavefunction in the 1S state must be completely symmetric

with respect to rotation and inversion. The first condition implies that the three Cartesian

directions must be treated on an equal footing, and the second, that the Cartesian 2p orbitals

must be doubly occupied. Thus, the wavefunction must be

|1S〉 = 3−1/2 [|xx̄|+ |yȳ|+ |zz̄|]

http://www2.chem.umd.edu/groups/alexander/chem691/tableau_method.pdf
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The expectation value of 1/r12 between the two 2p orbitals in this state is

〈1S| 1
r12

|1S〉 = [x2|x2] + 2[xy|yx] (111)

1
D state The Cartesian components of the l = 2 spherical harmonics, also referred to as

cubic harmonics are xy, xz, yz, x2 − y2 and 3z2 − r2. Since r2 = x2 + y2 + z2, the latter is

equivalent to 2z2 − x2 − y2. We thus have

|1Dxy〉 = 2−1/2 [|pxp̄y|+ |pyp̄x|] (112)

Note that imposing the “+” sign guarantees that this state is orthogonal to the |3,0P 〉 state

[Eq. (110)]. Similarly we have

|1Dxz〉 = 2−1/2 [|pxp̄z|+ |pzp̄x|] (113)

|1Dyz〉 = 2−1/2 [|pyp̄z|+ |pzp̄y|] (114)

|1Dx2−y2〉 = 2−1/2 [|pxp̄x| − |pyp̄y|] (115)

|1Dx2−y2〉 = 2−1/2 [|pxp̄x| − |pyp̄y|]

and, finally,

|1D3z2−r2〉 = |1Dz2〉 = 6−1/2 [3|pzp̄z| − |pxp̄x| − |pyp̄y|] (116)

The expectation value of 1/r12 between the two 2p orbitals in the first three states is (re-

member that [x2|y2] = [x2|z2] = [y2|z2] and, similarly [xy|yx] = [xz|zx] = [yz|zy].

〈1Dxy|
1

r12
|1Dxy〉 = 〈1Dxz|

1

r12
|1Dxz〉 = 〈1Dyz|

1

r12
|1Dyz〉 = [x2|y2] + [xy|yx] (117)

Likewise, the expectation value of 1/r12 between the two 2p orbitals in the x2 − y2 and z2

states is

〈1Dx2−y2 |
1

r12
|1Dz2−y2〉 = 〈1Dz2 |

1

r12
|1Dz2〉 = [x2|x2]− [xy|yx] (118)

Because of the spherical symmetry of the atom, the energies of the five components of

https://en.wikipedia.org/wiki/Cubic_harmonic
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the 1D state must be the same. Thus, equating Eqs. (117) and(118) we obtain

[x2|y2] + [xy|yx] = [x2|x2]− [xy|yx]

or, after rearrangement

[x2|x2] = [x2|y2] + 2[xy|yx] (119)

Remember that [xy|yx] is the self-repulsion of the overlap amplitude between a 2px and

a 2py orbital. This is a positive number. Thus, we see from the last equation that the

self-repulsion between two electrons in the same 2p orbital is greater than the repulsion

between two electrons in different 2p orbitals. This is physically reasonable. If we compare

the expressions for the expectation value of 1/r12 between the two 2p orbitals in the 3P , 1S

and 1D states [Eqs. (108), (111), and (117), and use Eq. (119) to write everything in terms

of the two two-electron integrals [x2|y2] and [xy|yx] we find

〈3P |1/r12|3P 〉 = [x2|y2]− [xy|yx]
〈1D|1/r12|1D〉 = [x2|y2] + [xy|yx]
〈1S|1/r12|1S〉 = [x2|y2] + 4[xy|yx]

so that the relative spacing is given in Fig. 7.

1S

1D

3P
2[xy|yx]

3[xy|yx]

FIG. 7. Spacing between the 3P, 1D and 1S states of the C atom, in terms of the exchange integral

[xy|yx].

7. Representation of the states

The five 1D states of the C atom [Eqs. (112)–(116)] can be thought-of as two-electron

analogs of the hydrogenic 3d orbitals, which are shown, in their Cartesian (real) representa-

tions, in Fig. 8. For example, in the 1Dxy state [Eq. (112)] there is one electron in the 2px
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FIG. 8. Images of the Cartesian hydrogenic 3d orbitals, from the online version of General Chem-

istry: Principles, Patterns, and Applications by Andy Schmitz.

orbital while the other is in the 2py orbital. The numerical value of the Slater determinant

|pxp̄y| is the product of a px orbital in the coordinates of electron 1 and a py orbitals in the

coordinates of electron 2 (or vice-versa). This product will be large and positive when the

coordinates of the two electrons (x1, y1, x2 and y2) both lie in the first and third quadrants

of the x1, y1 and x2, y2 planes, large and negative, when both lie in the second and fourth

quadrants of the xy plane, and small along the x or y axes. This is exactly like what is rep-

resented, qualitatively, by the upper-left-hand image in Fig. 8. The coordinate dependence

of the other four Cartesian components of the 1D state [Eqs. (113)–(116)] are illustrated

similarly in Fig. 8.

8. Reflection Symmetry

Consider a plane containing the z and x axes. Let the operator σ̂xz correspond to a

reflection of all the coordinates in this plane

x→ x, y → −y, z → z

https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/index.html
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so that, for any function f(x, y, z)

σ̂xzf(x, y, z) = f(x,−y, z)

The operator corresponding to a reflection of a N -electron function is just

σ̂xzf(x1, yz, z1, x2, y2, z2, . . . , xN , yN , zN) = f(x1,−yz, z1, x2,−y2, z2, . . . , xN ,−yN , zN )

The Hamiltonian is symmetric with respect to this operation, so that the wave functions for

any state of an atom can be chosen to be eigenfunctions of this operator, either symmetric

(which we label “+”) or antisymmetric (which we label “–”). The Cartesian atomic orbitals

are either positive (symmetric) or negative (antisymmetric). Notably, py is antisymmetric,

while px and pz are symmetric. the We see from the expression given in Eq. (103) that

σ̂xz
∣

∣

3P00

〉

= σ̂xz
i√
2
(|pxp̄y| − |pyp̄x|)

=
i√
2
(−|pxp̄y|+ |pyp̄x|) = −

∣

∣

3P00

〉

so that the |3P00〉 state is “antisymmetric” with respect to reflection.

The definite-m p1 and p−1 one-electron orbitals are neither symmetric nor antisymmetric.

From their definition [Eq. (91)] we see that σxzp1 = −p−1 and σxzp−1 = −p1. In three (or

higher) dimensions rotations and reflections do not commute. The spherical harmonics

are eigenfunctions of rotation around the z axis, and thus will not be eigenfunctions of a

reflection containing the z axis. However, the overall reflection symmetry of the |3P00〉 state
is still −1 even if we express it in terms of the definite-m orbitals [Eq. (88)], because

σ̂xz
∣

∣

3P00

〉

= σ̂xz
i√
2
(−|p−1p̄1|+ |p1p̄−1|)

=
i√
2
(−|p1p̄−1|+ |p−1p̄1|) = −

∣

∣

3P00

〉

Problem 21 : Determine the symmetry for reflection in the xz plane of the |1D00〉 and
|1S00〉 states.

http://en.wikipedia.org/wiki/Rotation_matrix
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M. Spin-Orbit splitting in the C atom

The electron possesses a magnetic moment by virtue of its orbital motion

~µl = β~l

where β is the Bohr magneton (β = eh̄/2me, or, in atomic units, β = 1/2), and also by

virtue of its spin

~µs = gβ~s

where the so-called “g” factor is nearly 2 (2.002319). The interaction of these two magnetic

moments gives rise to the spin-orbit Hamiltonian

Hso =
∑

i

a~li · ~si (120)

where the sum extends over all the electrons. Here a is a constant which can be evaluated

from the electronic wavefunction. There is also a term (the “spin other-orbit” term) which

arises from the interaction of the spin and electronic orbital magnetic moments on two

distinct electrons, but this is much smaller, so we will ignore it here.

As with any two angular momenta, you can express the dot product as

~li · ~si = lzsz +
1

2
[l+s− + l−s+] (121)

Since the spin-orbit Hamiltonian is a sum of one-electron operators, the matrix elements

of Hso vanish between Slater determinants which differ by more than one spin-orbital. In

general, for a determinant |ψ〉 ≡ |φ1φ2...φi...φN | we have

〈ψ|Hso |ψ〉 =
∑

i

lziszi (122)

In other words, only the lzsz term contributes to the diagonal elements of the spin-orbit

operator. Also, because sz is alternately +1/2 and –1/2 for a doubly-filled orbital, only

http://en.wikipedia.org/wiki/G-factor_(physics)
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unfilled shells contribute. For example, in the |3P11〉 state [Eq. (84)], we have

〈

3P11

∣

∣Hso

∣

∣

3P11

〉

= a

[

1 · 1
2
+ 0 · 1

2

]

=
1

2
a (123)

For two Slater determinants which differ by one spin-orbital, for example |ψ〉 [defined just

before Eq. (122)] and |Ψ〉 ≡ |φ1φ2...χi...φN | only the [l+s− + l−s+] term in Eq. (121) con-

tributes, so that

〈Ψ|Hso |ψ〉 = 〈φi|
a

2
[l+s− + l−s+] |χi〉 (124)

For two Slater determinants which differ by two or more spin-orbitals, the matrix element

of the spin-orbit coupling is zero.

Problem 22 : For an atom with a single electron in a p orbital outside of a closed

shell, as, for example, the Al atom, there are six possible states corresponding to three

possible projection of the electronic orbital angular momentum l = 1 and the two possible

projections of the spin angular momentum. The single spin-orbital corresponding to each

of these six states is listed in the following table

ML 1 1 0 0 −1 −1

MS 1/2 −1/2 1/2 −1/2 1/2 −1/2

state p1 p̄1 p0 p̄0 p−1 p̄−1

a. Evaluate the matrix elements of the spin-orbit operator in the basis of the 6

2P states. The matrix can be written as the constant a times a matrix of numbers.

Diagonalize this matrix to obtain the spin-orbit energy levels of a 2P atom. From the

NIST database determine the value of a for the B and Al atoms.

b. One can also write the total electronic orbital angular momentum ( ~J) of the atom

as the vector sum of the total spin angular momentum ~S and the total electronic angular

momentum ~L. For an atom in a 2P state S = 1/2 and L = 1. Thus, by the rules that

applies to vector addition of two angular momentum in quantum mechanics, we see that

http://physics.nist.gov/PhysRefData/ASD/levels_form.html
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J=1/2 or 3/2. If you ignore the spin-other-orbit terms, show that

Hso =
∑

i

a~li · ~si ∼= A~L · ~S

Show that

Hso =
1

2
A
(

~J2 − ~L2 − ~S2
)

[1] The approximation is called Hartree-Fock when there are more than two electrons, so that

electron exchange has to be included. For simplicity, we will designate it as Hartree-Fock even

in the case of He, where there are no exchange terms.

[2] A. R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd edition, third printing

(Princeton University Press, Princeton, 1974).
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