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I. UNITS AND CONVERSIONS

A. Atomic Units

Throughout these notes we shall use the so-called Hartree atomic units in which mass is

reckoned in units of the electron mass (me = 9.1093826 × 10−31 kg) and distance in terms

of the Bohr radius (a0 = 5.299175× 10−2 nm). In this system of units the numerical values

of the following four fundamental physical constants are unity by definition:

• Electron mass me

http://en.wikipedia.org/wiki/Atomic_units
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• Elementary charge e

• reduced Planck’s constant ~

• Coulomb’s constant 1/4πǫ0

The replacement of these constants by unity will greatly simplify the notation.

It is easiest to work problems entirely in atomic units, and then convert at the end to SI

units, using

• Length (Bohr radius) 1a0 = 5.299175× 10−2 nm = 0.5291775 Å

• Energy (Hartree) 1Eh = 4.35974417× 10−18 J

B. Energy Conversions

Atomic (Hartree) units of energy are commonly used by theoreticians to quantify elec-

tronic energy levels in atoms and molecules. From an experimental viewpoint, energy levels

are often given in terms of electron volts (eV), wavenumber units, or kilocalories/mole

(kcal/mol). From Planck’s relation

E = hν =
hc

λ
(1)

The relation between the Joule and the kilocalorie is

1 kcal = 4.184 kJ

Thus, 1 kcal/mole is one kilocalorie per mole of atoms, or 4.184×103 J divided by Avogadro’s

number (6.022×1023) = 6.9479×10−21 J/molecule. The conversions between these (and

other) energy units is given in numerous places on the web, for example

web.utk.edu/˜rcompton/constants.

C. Example: vibrational spacings

A good example showing how to work through conversion problems with atomic units

are calculations involving molecular vibrational spacings. Typically, transitions between

http://en.wikipedia.org/wiki/Planck%27s_relation
http://web.utk.edu/~rcompton/constants
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vibrational levels correspond to wavelengths in the infrared region of the spectrum. The

positions of infrared lines is usually designated in wave numbers or cm−1. This is the inverse

of the wavelength at which the transition occurs. The abbreviation for wave numbers is λ̄.

Let’s take a simple case, where λ̄=1000 cm−1. Let’s say we want to calculate the cor-

responding vibrational force constant k for an oscillator with vibrational “spacing” of 1000

cm−1 and a reduced mass of 16,000 me (nuclear masses are typically an integer times the

mass of the proton, which is ≈ 1800 me). Note that we put the word spacing in quotes,

since the units used are those related to the wavelength at which the transition occurs.

Conversion from wave numbers to atomic units [1 atomic unit of energy = 219474.6 cm−1]

gives the vibrational “spacing” to be ∆E = 1000/219474.6 = 4.5563 × 10−3 Hartree. Here

we have implicitly converted to an energy spacing, saying that the energy spacing at which

absorption will occur is governed by the Planck relation [Eq. (1)] Then, if 1/λ is measured

in cm−1, dividing by 219474.6 will give the correct energy spacing in atomic units of energy

(Hartree).

For a quantum oscillator of force constant k and reduced mass µ the vibrational spacing

is

∆E = ~ω = ~

√

k/µ

Here ω is the true vibrational frequency (in units of time−1) not the unit related to where

the transition occurs. Thus (since ~ = 1 in atomic units)

k = µ(∆E)2

Now, equating the ∆E in the last equation with the the observed spacing [Eq. (??)], we

obtain

k = (4.5563× 10−3)2 × 16000 = 0.3322 atomic units (2)

The units for force constant are energy·length−2, or in atomic units, hartree·bohr−2. Since

1 bohr = 5.29×10−11 m and 1 Hartree = 4.35974417×10−18 J, in SI units the value of the

force constant k in Eq. (2) is k = 5.174× 102 Joule·m−2.
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II. APPROXIMATION METHODS

A. Semiclassical quantization

The Bohr-Sommerfeld quantization condition is

S =

∮

~p · d~q = (n+ 1/2)h (3)

You may have seen this as

S =

∮

~p · d~q = nh

As we will see below, the additional factor of (1/2)h is necessary to ensure the correct

zero-point energy. For a one-dimensional system this is

S =

∮

pxqx = (n+ 1/2)h (4)

Here, the momentum is p = {2m[E − V (x)]}1/2, so that the classical action S is a function

of the total energy E.

Consider a harmonic oscillator with V (x) = 1
2
kx2. In this case

p =

[

2m

(

E − 1

2
kx2

)]

The contour integral in Eq. (4) goes from the inner turning point x< to the outer turning

point x> and then back. These turning points are defined by the values at which p(x) = 0,

namely x<(x>) = ∓(2E/k)1/2. Thus

S = 2

∫ x>

x<

[

2m
(

E − 1
2
kx2

)]1/2
dx = 2(2mE)1/2

∫ x>

x<

[

1− kx2

2E

]1/2

dx

The factor of 2 reflects the identity of the integral from x< to x> and its reverse. Because

it’s a contour integral these add rather than cancel.

If we let u2 = kx2/2E, then x =
√

2E/k u and dx =
√

2E/k du. In terms of the new

variable u, the turning points are u<(u>) = ∓1. The classical action is then
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S = 4E(m/k)1/2
1

∫

−1

√
1− u2du

Now, let u = cosϑ, so that
√
1− u2 = sinϑ and du = − sinϑ dϑ. The integral becomes

S = −4E(m/k)1/2
0

∫

π

sin2 ϑdϑ = −4(m/k)1/2(−π/2) = 2πE(m/k)1/2

The Bohr-Sommerfeld quantization condition then implies that

2πE(m/k)1/2 = (n+ 1/2)h

or

E = (n+ 1/2)(k/m)1/2(h/2π) = (n + 1/2)(k/m)1/2~

Since, for the harmonic oscillator ω =
√

k/m, we recover the quantization condition

 
x 

[2mE]1/2 

 S pdx = ∫ 

[2
m

(E
–

V
)]

1
/2

 

x< x> 

FIG. 1. Dependence on distance of a typical phase integral [Eq. (4)].

E = (n+ 1/2)~ω

As stated above, without the additional factor of 1/2, we would not have any zero-point

energy, even though the level spacing would be exact.
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For a general potential, an analytic integration of pdq may not be possible. However, it is

always possible to evaluate the integral of Eq. (4) numerically, as the area under the curve

in Fig. 1

This is easier than numerical integration of the Schroedinger equation. Unfortunately,

there is no guarantee that the Bohr-Sommerfeld quantization condition is exact.

B. Time-independent perturbation theory

Suppose the full Hamiltonian can be expanded as

H = Ho + λH ′

where the solutions to the zeroth-order Hamiltonian are known

Hoφ
(0)
n = E(0)

n φ(0)
n .

Here the subscript n designates the particular value of the energy. We will then expand the

solution to the full Hamiltonian ψn as

ψn = φ(0)
n + λφ(1)

n + λ2φ(2)
n

If we substitute this expansion into the Schroedinger equation Hψn = Enψn, we obtain

Hψn = Hoφ
(0)
n + λ

(

Hoφ
(1)
n +H ′φ(0)

n

)

+ λ2
(

Hoφ
(2)
n +H ′φ(1)

n

)

+ ... (5)

We similarly expand

En = E(0)
n + λE(1)

n + λ2E(2)
n + ...

so that

Enψn = E(0)
n φ(0)

n + λ
(

E(0)
n φ(1)

n + E(1)
n φ(0)

n

)

+ λ2
(

E(0)
n φ(2)

n + E(1)
n φ(1)

n + E(2)
n φ(0)

n

)

+ ... (6)

We assume that the Schroedinger equation is satisfied for all values of the perturbation

parameter λ. This means that the terms multiplied by each power of λ in Eq. (5) must
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equal the terms multiplied by the same power of λ in Eq. (6). In other words

Hoφ
(0)
n = E(0)

n φ(0)
n

which is the unperturbed Schroedinger equation, and

H ′φ(0)
n +Hoφ

(1)
n = E(1)

n φ(0)
n + E(0)

n φ(1)
n . (7)

Now, in the last equation, we can expand φ
(1)
n in terms of the solutions to the unperturbed

equation, namely

φ(1)
n =

∑

k 6=n

C
(1)
nk φ

(0)
k (8)

Note that the sum extends over all states except for k = n. If we introduce this expansion

into Eq. (7) we obtain

H ′φ(0)
n +Ho

∑

k 6=n

C
(1)
nk φ

(0)
k = E(1)

n φ(0)
n +

∑

k 6=n

C
(1)
nkE

(0)
n φ

(0)
k (9)

Since Hoφ
(0)
k = E

(0)
k φ

(0)
k , we can simplify the last equation to

H ′φ(0)
n = E(1)

n φ(0)
n +

∑

k 6=n

C
(1)
nk

(

E(0)
n −E

(0)
k

)

φ
(0)
k (10)

If now, we premultiply the last equation by φ
(0)∗
n and integrate over all coordinates, we

obtain (we assume that the zeroth order functions are orthonormal, namely
∫

φ
(0)∗
n φ

(0)
k = δkn)

E(1)
n =

∫

φ(0)∗
n H ′φ(0)

n =
〈

φ(0)
n |H ′|φ(0)

n

〉

Thus, the first-order correction to the energy is just the average, taken over the zeroth-order

wavefunction, of the perturbation.

Now, we return to Eq. (10), premultiply by φ
(0)∗
k and integrate over all coordinates, we

obtain (after taking into account the orthogonality of the φ
(0)
k )

〈

φ
(0)
k |H ′| φ(0)

n

〉

= C
(1)
nk

(

E(0)
n −E

(0)
k

)
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or

C
(1)
nk =

〈

φ
(0)
k |H ′|φ(0)

n

〉

/
(

E(0)
n − E

(0)
k

)

(11)

so that Eq. (8) becomes

φ(1)
n =

∑

k 6=n

〈

φ
(0)
k |H ′| φ(0)

n

〉

E
(0)
n −E

(0)
k

φ
(0)
k (12)

Thus, the first-order correction to the wavefunction of state n is obtained by adding a

weighted fraction of each of the zeroth-order wavefunctions of state k where the weighting

is proportional to the coupling between state k and state n induced by the perturbation,

divided by the energy gap between state n and state k. In general, then, significant state

mixing occurs if (a) the states are coupled strongly by the perturbation and (b) the states

are close in energy.

Now, let’s consider the terms of order λ2 in Eqs. (5) and (6). We have

Hoφ
(2)
n +H ′φ(1)

n = E(0)
n φ(2)

n + E(1)
n φ(1)

n + E(2)
n φ(0)

n (13)

Following Eq. (8) we expand φ
(2)
n as

φ(2)
n =

∑

k 6=n

C
(2)
nk φ

(0)
k (14)

We substitute this equation as well as Eq. (12) into Eq. (13), premultiply by φ
(0)
n , and

integrate to get (remembering that φ
(2)
n is orthogonal to φ

(0)
n )

E(2)
n =

〈

φ(0)
n |H ′| φ(1)

n

〉

(15)

We can then substitute in Eq. (12) for φ
(n)
n to get

E(2)
n =

∑

k 6=n

〈

φ
(0)
k |H ′| φ(0)

n

〉〈

φ
(0)
n |H ′| φ(0)

k

〉

E
(0)
n − E

(0)
k

=
∑

k 6=n

∣

∣

∣

〈

φ
(0)
k |H ′| φ(0)

n

〉
∣

∣

∣

2

E
(0)
n − E

(0)
k

(16)

Consider the lowest energy level (n = 1, say). Then, E
(0)
n −E(0)

k will always be a negative

number. Since the matrix element in the numerator on the right-hand-side of Eq. (16) is

squared, and thus always positive (or zero), the contribution of each term in the summa-
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tion will be negative. Thus we conclude that for the lowest energy level, the second-order

contribution to the energy will always be negative.

C. Variational theorem

Suppose you have some function ψ(x) defined on the same domain as the Hamiltonian.

For simplicity, we’ll consider only one dimension, but this is not necessary. The function ψ(x)

can always be expanded in terms of the eigenfunctions of the Hamiltonian Ĥ(x), namely

ψ(x) =

∞
∑

n=0

Cnφn(x)

where

Ĥ(x)φn(x) = εnφn(x)

We’ll also assume the function ψ(x) is normalized, so that

∫

ψ∗(x)ψ(x)dx =
∑

m

∑

m

C∗
mCn

∫

φ∗
m(x)φn(x)dx = 1

The eigenfunctions of Ĥ form an ortho-normal set (
∫

φ∗
m(x)φn(x)dx = δmn), so that

∑

n

|Cn(x)|2 = 1 (17)

Now, consider the expectation value of the Hamiltonian, which we will call Evar

Evar = 〈ψ|Ĥ|ψ〉 =
∫

ψ∗(x)Ĥ(x)ψ(x)dx =
∑

m

∑

n

C∗
mCn

∫

φ∗
m(x)Ĥ(x)φn(x)dx

=
∑

m

∑

n

C∗
mCn

∫

φ∗
m(x)εnφn(x)dx =

∑

n

|Cn(x)|2εn

We’ll assume that n = 0 corresponds to the ground state so that εn>0 ≥ ε0. Thus we can

collect the first and last terms in the previous equation, writing

Evar =
∑

n

|Cn(x)|2εn ≥
∑

n

|Cn(x)|2ε0 = ε0
∑

n

|Cn(x)|2 = ε0

We have used Eq. (17) to get rid of the summation in the last term. Note that the inequality
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becomes an equality if and only if ψ(x) happens to be identical to the wave function of the

ground state φ0.

This is the variational theorem. In practice, you would construct some function ψ(x)

which would depend on a number of parameters αi, say. The variational energy Evar would

be a function of these parameters. You could then minimize Evar with respect to varying

each of these parameters, to obtain the best estimate of the energy of the ground state

consistent with your choice of trial wave function.

D. Linear variational method

Suppose you have two states |1〉 and |2〉, which we assume to be normalized. Let the

matrix of the full Hamiltonian be




H11 H12

H21 H22



 (18)

We shall designate this matrix H, which, in general, is Hermetian. For simplicity, we will

assume here that the matrix is real, so that H12 = H21. The corresponding overlap matrix,

S, is




1 S12

S21 1



 (19)

Now, define a linear combination of states |1〉 and |2〉

|φ〉 = C1|1〉+ C2|2〉 (20)

The expectation value of the Hamiltonian is then

Evar =
〈φ|H|φ〉
〈φφ〉 , (21)

which can be written as

〈φ|H|φ〉 = Evar〈φ|φ〉 (22)

Problem 1
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Obtain an expression for Evar in terms of C1, C2, H11, H12, H22, S11, S12, and S22.

Suppose we use a three-state expansion of the wave function

|φ〉 = C1|1〉+ C2|2〉+ C3|3〉 (23)

If we take the derivative of Eq. (22) with respect to the ith coefficient Ci we obtain

∂〈φ|H|φ〉
∂Ci

= Evar
∂〈φ|φ〉
∂Ci

+ 〈φ|φ〉∂Evar

∂Ci
(24)

or, explicitly,

2CiHii +
∑

 6=i

Cj (Hij +Hji) = Evar

[

2CiSii +
∑

 6=i

Cj (Sij + Sji)

]

+
∂Evar

∂Ci
〈φ|φ〉 (25)

Since the Hamiltonian H and overlap S matrices are symmetric, this simplifies to

CiHii +
∑

 6=i

CjHij = Evar

[

CiSii +
∑

 6=i

CjSij

]

+
∂Evar

∂Ci
〈φ|φ〉 (26)

Since the variational principle guarantees that Evar lies above the true energy of the lowest

state for any value of the coefficients Ci, we can minimize Evar with respect to varying each

one of them separately, or,

∂Evar/∂C1 = 0 = ∂Evar/∂C2 = ∂Evar/∂C3

If we replace each of the ∂E/∂C partial derivatives in Eq. (26) by zero, we obtain

H× c−EvarS× c = 0 (27)

where c is a 3 × 1 column vector with elements Ci, and 0 is a 3 × 1 column vector with

elements zero. Here × designates a matrix-vector product.

A simpler case arises when the overlap matrix is the (diagonal) unit matrix. In this case
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the set of simultaneous homogeneous equations can be written as

[H− EvarI] c = 0 (28)

This set of simultaneous homogeneous algebraic equations can always be satisfied by the

trivial solution in which all the elements of c are zero. There are only 3 (or, in general

N) solutions in which the elements of c are non-zero solutions. These correspond to 3

particular choices of the c vector, which diagonalize the H matrix and three different values

of the eigenvalue E. We designate these three particular choices by the matrix C, where the

kth column corresponds to the coefficients Cik for the kth set of coefficients and a diagonal

matrix ε with diagonal elements equal to the three different values of E. We can group

these three into a single matrix equation

HC = C ε (29)

The ordering of the right hand side ensures that the successive columns of C will be multi-

plied by the successive values of E. [If the ordering were εC, then each row of C would be

multiplied by the different values of E, which is not what is implied in Eq. (28)].

Premultiplication of Eq. (29) by C
T , gives

C
T
HC = C

T
C ε (30)

If the overlap matrix S is diagonal, then the expansion states are orthonormal. The trans-

formation C preserves this orthonormality and is called an orthogonal transformation, with

the property

C
T
C = CC

T = I

Consequently, Eq. (30) simplifies to

C
T
HC = ε (31)

Thus C defines the diagonalizing transformation of the matrix H.
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Problem 2

For a two-state problem with a unit overlap matrix, the diagonalizing transform can

be written in terms of trigonometric functions of a single angle

C =





cosϑ sinϑ

− sinϑ cos ϑ



 (32)

With this expression for C carry out the orthogonal transformation of Eq. (31) and then

require that the off-diagonal elements vanish, since E is a diagonal matrix. This will

allow you to evaluate the value of the angle ϑ in terms of the matrix elements of H.

Then, evaluate the two diagonal matrix elements of E in terms of ϑ and the matrix

elements of H. Give your answer in terms of cosϑ and sinϑ.

Note if you use Matlab to do this problem, and set up the transpose matrix with

symbolic variables then know that C.′ (with the period) ensures the transpose, while C′

is the Hermitian adjoint.

E. Secular Determinant

Let’s say you haven’t figured out how to use Matlab or Mathematica and you don’t have

access to Wolfram Alpha. So, you want to solve for the eigenvalues the old-fashioned way,

by finding the roots of the secular determinant.

When you have N homogeneous linear equations, you can show that the condition for non-

trivial (non-zero) solutions correspond to values of Evar in Eq. (33) for which the determinant

of H − Evar1 vanishes. For a 2×2 problem, this determinant is (here we replace Evar with

E, for brevity].

∣

∣

∣

∣

∣

∣

H11 − E H12

H21 H22 −E

∣

∣

∣

∣

∣

∣

= (H11 − E) (H22 − E)−H12H21 = H11H22−E (H11 +H22)+H11H22−H12
2

(33)

This is a polynomial of order N in E (here a quadratic, since N = 2). There are in general
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two roots. Consider a 2×2 system defined by the matrix

H =





0.3 0.05

0.05 −0.1



 (34)

Then, solving it as in Eq. (33), we have

|H− E1| =

∣

∣

∣

∣

∣

∣

0.3 0.05

0.05 −0.1

∣

∣

∣

∣

∣

∣

= (0.3− E)(−0.1− E)− 0.052 = E2 − 0.2E − 0.0325 (35)

This quadratic equation has the roots, E = −0.10616 and E = 0.30616. If we take the

lowest root, then the homogeneous equation for the expansion coefficients is





0.3− E 0.05

0.05 −0.1− E









C11

C21



 =





0.3 + 0.10616 0.05

0.05 −0.1 + 0.10616









C11

C21





=





0.40616 0.05

0.05 0.00616









C11

C21



 = 0

(36)

Evaluation of the matrix equations leads to two algebraic equations

0.40616C11 + 0.05C21 = 0

and

0.05C11 + 0.00616C21 = 0

Both of these can be solved to yield C21 in terms of C11, giving, in both cases

C21 = −0.40616C11/0.05

or

C21 = 8.1231C11

The values of the coefficients can then obtained by requiring that the eigenfunction be
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normalized, namely

C2
11 + C2

21 = 1 = C2
11(1

2 + 8.1231)2 = 66.985C2
11

from which we obtain

C11 = 66.985−1/2 = 0.12219

and then

C21 = −8.1231C11 = −0.99251

Problem 3

Obtain the expansion coefficients C12 and C22 for the eigenvector which corresponds to

the second eigenvalue, E = 0.30616, without solving again the secular equation for this

new value of E.

In general, for higher dimensions evaluation of the secular determinant, obtaining the

roots of |H− E1| = 0 and then back solving to obtain the eigenvectors is computationally

less efficient than just diagonalizing [H− E1].

In Matlab, one can obtain the eigenvalues of a symmetric matrix (say it’s defined as the

variable hmat) by the command

eig(hmat)

or, the eigenvalues and all eigenvectors, by the command

[evec, eval] = eig(hmat)

If you have a simple 2× 2 (or 3× 3) problem and you don’t want to enter the matrix first,

you can just enter a one-line command [say, for example, for the matrix defined by Eq. (34)]

[evec eval] = eig([[0.2 0.05];[0.05 -0.1]])

In Wolfram Alpha, you would enter the request

“eigenvalues {{0.2,0.05},{0.05,–0.1}}”
These two examples illustrate the differing syntax for dealing with arrays in Matlab and

in Wolfram Alpha. Note, also, that Matlab returns the eigenvalues (and corresponding
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eigenvectors) lowest first, while Wolfram Alpha returns them in the opposite order.

Problem 4

The Hermite polynomials Hn(u) satisfy the two-term recursion relation (here we are

using n rather than n for the quantum number, since n is usually used in mathematics)

Hn+1(u) = 2 [uHn(u)− nHn−1(u)]

The first two Hermite polynomials (n = 0 and 1) are H0(u) = 1 and H1(u) = 2u.

Determine expressions for Hn(u) for n = 2− 4. If you use Matlab, be really careful you

program the recursion relation correctly.

Defining (in atomic units, where ~ = 1) α = µω and u =
√
αx, the wavefunctions for

the Harmonic oscillator are given by

ψn(x) =
(α

π

)1/4

NnHn(u)e
−u2/2 (37)

where Nn is a normalization constant.

(a) Knowing that
∫

e−u2

du =
√
π/α1/2,

∫

u2e−u2

du =
√
π/2α3/2, and

∫

u4e−u2

du =

3
√
π/4α5/2, determine Nn for n = 0 and 1. Remember we want

∫∞

−∞
ψn(x)

2dx to equal

one; the integration is over x not u.

(b) The mass of the proton is 1.0073 atomic mass units (1 amu = 1822.9 atomic

units). The vibrational frequency of the H2 molecule is 4400 cm−1. For H2 determine µ

and ω in atomic units.

(c) In a harmonic oscillator model for H2, the potential is 1
2
kx2, where x = r − re.

What is the force constant k (also in atomic units) for H2?

(d) A molecule in vibrational level n oscillates back and forth between its classical

turning points, re±xt, which are defined as the points at which V (r±xt) = εn = (n+ 1
2
)ω.

For the harmonic oscillator model of the vibrational motion of the H2 molecule, what is

the value of xt in the lowest (n = 0) vibrational level? Hint: plot V (x) − ε0 and find

graphically the value of x for which the curve goes through zero, as follows:

v=0.5*k*x^2 % k must have a numeric value,
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% and x declared symbolic

ezplot(v-omega/2,[-.3 .3]) % omega must have a numeric value

grid % put a grid on the graph

[xt,y]=ginput(1) % place the cursor over the zero intercept

% and click to get your answer

(e) Suppose you were to use a quartic oscillator V (x) = 1
2
k4x

4 to approximate the

vibrational potential of H2. Choose k4 so that the difference between the harmonic and

quartic potentials, integrated over twice the classically allowed range of motion, vanishes

∫ +2xt

−2xt

1

2

[

k2x
2 − k4x

4
]

= 0.

You’ve already determined the value of k2 in part (c) above. What is the resulting value

of k4 in terms of xt and k2? We integrate over twice the classically allowed range because

the very light effective particle (µ = 0.5 atomic mass units) can penetrate significantly

into the classical forbidden region.

(f) With this value of k4, let’s do several variational calculation for the quartic oscilla-

tor, assuming the value of µ appropriate for H2, which you determined in part (b) above.

Since the quartic oscillator potential is symmetric, the wavefunction for the lowest state

will be symmetric and nodeless. We’ll use the the lowest three symmetric harmonic

oscillator functions [Eq. (37) with n=0, 2, and 4] as variational functions. The matrix

of the Hamiltonian in this 3×3 basis are

〈ψn|Ĥ|ψn′〉 ≡ 〈n|Ĥ|n′〉 = 〈n|T̂ |n′〉+ 〈n|V̂ |n′〉

= 〈n| − 1

2µ

d2

dx2
|n′〉+ 〈n|1

2
k4x

4|n′〉

The matrix elements of T̂ in the harmonic oscillator basis are all zero, except for the

following

〈n|T̂ |n〉 = (2n+ 1)α

4µ
, 〈0|T̂ |2〉 = 〈2|T̂ |0〉 = −

√
2α

4µ
, 〈2|T̂ |4〉 = 〈4|T̂ |2〉 = −

√
3α

2µ
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Similarly, the potential matrix elements are

〈ψn|V̂ |ψn′〉 ≡ 〈n|V̂ |n′〉 = (k4/α
2)V (n, n′)

where

V (0, 0) =
3

8
, V (0, 2) = V (2, 0) =

3
√
2

4
, V (0, 4) = V (4, 0) =

√
6

4

V (2, 2) =
39

8
, V (2, 4) = V (4, 2) =

7
√
3

2
, V (4, 4) =

123

8

Assume that you use just the n=0 harmonic oscillator function of Eq. (37) to ap-

proximate the wavefunction for the quartic oscillator, and assume that α is a variable

parameter. Determine an expression for the variational energy of the H2 quartic oscilla-

tor, as a function of α. Find the value of α which minimizes this, and obtain the best

variational estimate of the ground state energy. Hint: Your energy should be close to the

energy of the n = 0 state of H2 treated as a harmonic oscillator.

Then, keeping this best value of α determine the 3 × 3 Hamiltonian matrix (give

the numerical matrix, in atomic units. Hint: To check your results H02 ≈ 10−6) and

H24 = 4.4138×10−3. Diagonalize this matrix, to determine the variational approximation

to the energies of of the lowest three symmetric levels.

Problem 5

The three-parameter Morse potential is a good approximation to many potential curves

for diatomic molecules.

V (r) = De {exp [−2β(r − re)]− 2 exp [−β(r − re)]} (38)

Here De is the dissociation energy, re is the equilibrium internuclear bond distance.

(a) Give the relation which relates the exponential factor β to the harmonic vibrational

frequency ω, the reduced mass of the oscillator µ and the dissociation energy De. For

http://en.wikipedia.org/wiki/Morse_potential


19

H2, the bond dissociation energy is 4.52 eV. What is the value of the Morse parameter

β in atomic units for the H2 molecule?

(b) The exact energy levels of the Morse oscillator are given by the expression

En = ~ω(n+ 1/2)− [~ω(n+ 1/2)]2

4De

or, if all quantities are in atomic units

Emn = ω(n+ 1/2)− [ω(n+ 1/2)]2

4De

here ω =
√

k/µ with k = d2V (r)/dr2|r=re. As n increases, eventually this expression

will give the unphysical result that En+1 − En is zero or negative. The value of n at

which this occurs is an estimate of the number of bound states of the molecule. Obtain

an algebraic expression for the maximum number of bound vibrational levels for the

H2 molecule? (You may also want to see the Morse Oscillator demonstration on the

Wolfram Science webpage. If you put in the correct parameters for H2, you’ll see that

the number of bound states is equal to what you predicted).

F. Non-orthogonal functions

In Sec. IIC we assumed the expansion functions φi were orthonormal. Here we will

expand the discussion in Sec. IIC to treat this case. Let’s be a bit more rigorous. Suppose

each eigenfunction ψk is expanded in terms of the basis functions φi

ψk =
∑

i

Cikφi

We’ll assume, for simplicity, that the Cik are real. Note that we are ordering the indices so

that the expansion coefficients of ψi are a column of the matrix C. Then, for any operator

Â, the matrix of the operator in the ψ basis is

〈ψk|Â|ψl〉 =
∑

i

∑

j

CikCjl〈φi|Â|φj〉 =
∑

i

∑

j

CijCjlAij

http://en.wikipedia.org/wiki/Morse_potential
http://demonstrations.wolfram.com/EnergyLevelsOfAMorseOscillator/
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In matrix notation, this is

Aψ = C
T
AC (39)

For simplicity, the matrix A with no subscript will designate the matrix of Â in the φ basis,

while the matrix of A in the ψ basis will be distinguished by a subscript.

1. Generalized eigenvalue problem

In Sec. IID, we started with the expression Evar = 〈ψ|Ĥ|ψ〉/〈ψ|ψ〉, differentiated with

respect to each of the expansion coeffients, and set equal to zero, to obtain the linear

equations [Eq. (27)]

Hc−EvarSc = 0 (40)

The solution c is a column vector. For an expansion in terms of N functions, there are N

such sets of N equations. The solutions define a matrix C. Each column of C corresponds

to one of the ψk, with best variational energy Evar = εk.

In general, when the overlap matrix is not diagonal, the eigenequations (29) become

HC = SC ε (41)

where ε is a diagonal matrix. The solution to these homogeneous equations, the eigenvalues

C and eigenvectors ε, can be obtained by solution of the generalized eigenvalue problem,

invoked by the Matlab commands eig(hmat,smat), which gives just the eigenvalues, or

[evec, eval]=eig(hmat,smat), which yields both the eigenvalues and the eigenvectors.

Here, since the φi basis is not orthogonal (S not diagonal), the overlap between the

eigenfunctions ψk is obtained from Eq. (39), namely

Sψ = C
T
SC = 1 (42)

The set of functions ψk, which are solutions to the generalized eigenvalue problem, are

orthonormal. Similarly, again from Eq. (39), the matrix of Ĥ in the

Hψ = C
T
HC = ε (43)
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2. Factorization of a symmetric positive definite overlap matrix

Solution of the generalized eigenvalue problem involves several steps. These are all “under

the hood” if you use the Matlab command eig(gmat,smat), but a full discussion is given

here for completeness.

The overlap matrix S is symmetric. In cases where it is positive definite (all elements

greater than or equal to zero), you can use Cholesky decomposition which reduces S to the

product of an upper triangular matrix and its transpose (which is a lower triangular matrix)

S = U
T
U

In Matlab you can invoke this by U=chol(S). Then you can transform Eq. (41) as follows

HC = SCε

HC = U
T
UCε

(UT )−1
HC = UCε

(U−1)THU
−1
UC = UCε

H̃UC = UCε

H̃C̃ = C̃ε (44)

Here the definition of H̃ is obvious and we have used the fact that (AT )−1 = (A−1)T .

Thus, Cholesky factorization can be used to convert a non-orthogonal eigenvalue problem

[Eq. (41)] to an orthogonal eigenvalue problem equivalent to Eq. (29). The eigenvalues are

unchanged. The eigenvectors C̃ are directly orthogonal

C̃
T
C̃ = 1

The eigenvectors of the original non-orthogonal problem C are related to those of Cholesky-

factorized orthogonal eigenvalue problem by

UC = C̃

which is a set of linear equations. In Matlab, this (or any) set of linear equations can be

https://en.wikipedia.org/wiki/Cholesky_decomposition
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solved with the backslash operator \, which is also called mldivide.

Note that if the S matrix is positive definite, then it is faster to invoke the generalized

eigenvalue routine with the specific ’chol’ flag, namely [v d]=eig(hmat,smat,’chol’).

3. Factorization of a symmetric general overlap matrix

If the overlap matrix is not positive definite, then implementation of the generalized

eigenvalue routine requires implicit use of the so-called “generalized Schur” or “QZ” de-

composition. For more detail the interested reader should consult a more specialized text

[Golub, G.H. and Van Loan, C.F. Matrix Computations (Johns Hopkins University Press,

3rd ed. 1996) ISBN 0-8018-5414-8. (Section 7.7 at p. 313)].

Problem 6

Let A be an arbitrary positive definite, symmetric 2× 2 matrix. It can be factored as

A = U
T
U

Determine the matrix elements of U in terms of those of A.

Then, if you feel adventurous, do the same exercise for a 3× 3 matrix. Be sure to use

Matlab’s symbolic capabilities to help you here.

4. Gram-Schmidt orthogonalization

Rather than working with non-orthogonal expansion functions, we can construct an or-

thonormal set by Gram-Schmidt orthogonalization, which proceeds as follows:

Suppose we consider just two non-orthogonal functions φi with i = 1, 2. Assumer, for

convenience, that the functions are normalized but not orthogonal, in other words S11 =

S22 = 1. Define a new set of functions φ̃i, which we will construct to be orthogonal. Let

us start by setting φ̃1 equal to φ1. Then, we can take a linear combination of φ1 and φ2 to

https://en.wikipedia.org/wiki/Schur_decomposition#Generalized_Schur_decomposition
http://en.wikipedia.org/wiki/Gram–Schmidt_process
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construct a second function φ̃2 which is orthogonal to φ̃1 as well as being normalized

φ̃2 = A2φ1 +B2φ2

We will choose the coefficients A2 and B2 to ensure this orthogonality and normalization con-

straints. Mathematically, we require that 〈φ̃1|φ̃2〉 = 0 and 〈φ̃2|φ̃2〉 = 1. The first condition

implies that

0 = 〈φ̄1|φ̄2〉 = 〈φ1|A2φ1〉+ 〈φ1|B2φ2〉 = A2S11 +B2S12 = A2 +B2S12

This leads to the following relation between A2 and B2

A2 = −B2S12

The second condition implies that

1 = 〈φ̄2|φ̄2〉 = A2
2S11 +B2

2S22 + 2A2B2S12 = A2
2 +B2

2 + 2A2B2S12

Substitution from the previous equation gives

1 = B2
2S

2
12 +B2

2 − 2B2
2S

2
12

which can be solved to give (taking the positive square root)

B2 =
[

1− S2
12

]−1/2

and then

A2 = −S12

[

1− S2
12

]−1/2

For three states, we start with the two functions φ̃1 and φ̃2 of the previous paragraph

and then orthogonalize the third basis function to these. We write

φ̃3 = A3φ̃1 +B3φ̃2 + C3φ3 (45)
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We know that φ̃1 and φ̃2 are normalized and orthogonal to each other. We need then

〈φ̃1|φ̃3〉 = 0 (46)

and

〈φ̃2|φ̃3〉 = 0 (47)

and

〈φ̃3|φ̃3〉 = 1 (48)

From Eq. (45) we see that the constraint contained in Eq. (46) is equivalent to

0 = A3〈φ̃1|φ̃1〉+B3〈φ̃1|φ̃2〉+ C3〈φ̃1|φ̃3〉

= A3 × 1 +B3 × 0 + C3S13

= A3 + C3S13 (49)

Similarly, Eq. (47) simplifies to

0 = A3〈φ̃1|φ̃2〉+B3〈φ̃2|φ̃2〉+ C3〈φ̃2|φ̃3〉

= A3 × 0 +B3 × 1 + C3S̃23

= B3 + C3S̃23 (50)

where S̃23 = 〈φ̃2|φ3〉. Finally, Eq. (48) simplifies to

1 = A2
3〈φ̃1|φ̃1〉+B2

3〈φ̃2|φ̃2〉+ C2
3〈φ̃3|φ̃3〉+ 2A3B3〈φ̃1|φ̃2〉+ 2A3C3〈φ̃1|φ3〉+ 2B3C3〈φ̃2|φ3〉

= A2
3 +B2

3 + C2
3 + 2A3B3 × 0 + 2A3C3S13 + 2B3C3S̃23

= A2
3 +B2

3 + C2
3 + 2A3C3S13 + 2B3C3S̃23 (51)

This is complicated, no? You want to use the preceding three equations to solve for the

three coefficients A3, B3, and C3. But this is complicated, since Eqs. (50) and (51) involve

the overlaps between the orthogonalized φ̃2 and the original φ3. These overlaps are linear

combinations of the overlaps S13 and S23. It’s a real mess to keep track of all this algebra

without making mistakes.

In Gram-Schmidt orthogonalization, one is successively constructing a linear combination
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of the N th function with all preceding functions (1 . . .N − 1) to preserve orthogonality. Let

us start with N basis functions, which we will represent by a column vector

Φ
(1) =





















φ1

φ2

φ3

...

φN





















We then orthogonalize φ2 to φ1, obtaining

Φ
(2) =



























φ1

φ̃2

φ3

φ4

...

φN



























We can write this in matrix notation as

Φ
(2) = D

(2)T
Φ

(1)

where

D
(2) =





















1 A2 0 · · · 0

0 B2 0 · · · 0

0 0 1 · · · 0
...

...
...
. . .

...

0 0 0 · · · 1
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Then we orthogonalize the third function, getting

Φ
(3) =



























φ1

φ̃2

φ̃3

φ4

...

φN



























or

Φ
(3) =

(

D
(2)
D

(3)
)T

Φ
(1) = D

(3)T
D

(2)T
Φ

(1)

where

D
(3) =





















1 0 A3 · · · 0

0 1 B3 · · · 0

0 0 C3 · · · 0
...
...

...
. . .

...

0 0 0 · · · 1





















The algebra of this procedure, as well as the need to keep rearranging the original overlap

matrix, becomes more and more complicated as we proceed to a larger number of basis

functions. Ugh!

5. Summary of methods

To summarize, if you chose to expand in a nonorthogonal basis set, there are three

alternatives:

(a) Determine the eigenvalues (the diagonal matrix E) and eigenvectors (C) of Eq. (41)

directly using a generalized eigenvalue call [e.g. eig(hmat,smat) in Matlab].

(b) Explicitly use Cholesky factorization as outlined in Sec. II F 2.

(c) Use Gram-Schmidt orthogonalization to construct N orthonormal states by construct-

ing, successively, the transformation matricesD(N) defined in the preceding subsection. Then

transform the Hamiltonian into the basis of Gram-Schmidt orthogonalized states
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HGS = D
T
HD (52)

where

D = D
(N)

D
(N−1) · · ·D(2) (53)

Since the Gram-Schmidt orthogonalized basis states are orthonormal, you can get the eigen-

values and the eigenvectors in the Schmidt orthogonalized basis from a standard diagonal-

ization of the transformed Hamiltonian matrix H̃GS.

Now, S is diagonalized in the Gram-Schmidt basis, so that

DGS
T
SDGS = 1

which can be rearranged to

S = (DGS
−1)TDGS

−1

(Note that the inverse of the matrixD is not its transpose. The transformation from the non-

orthogonal basis to the orthogonal Gram-Schmidt basis is not an orthogonal transformation).

Similarly, Eq. (52) can be rearranged as

H = (DGS
−1)THGSDGS

−1

In the original basis the eigenequations are

HC = SCε

Substitution here of the two preceding equations (for H and S) gives

(DGS
−1)THGSDGS

−1
C = (DGS

−1)TDGS
−1
Cε

Multiplication up by (DGS)
T gives [note that (DGS)

T is the inverse of (DGS
−1)T ].

HGSDGS
−1
C = DGS

−1
Cε
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In the Gram-Schmidt basis the eigenequations are

HGSCGS = CGSε

Comparing these last two equations, we see that the eigenvectors C in the original basis can

be related to the eigenvectors in the Gram-Schmidt basis by

CGS = DGS
−1
C

or

C = DGSCGS (54)

I have put on the website a Matlab script which illustrates in detail the linear algebra

contained in this section. Download this file and run it!

Problem 7

Suppose that you have a Hamiltonian matrix given by

H =





0.29 −0.44

−0.44 −0.39





and an overlap matrix given by

S =





1 0.68

0.68 1





Use method (c) above (Gram-Schmidt orthogonalization) to obtain (i) the eigenvalues,

(ii) the eigenvectors (Cgs) in the basis of the Gram-Schmidt orthogonalized states, and,

(iii), from Eq. (54), the eigenvectors in the original basis (C)

Check your results by comparing with the result of a generalized eigenvalue call

[C,epsilon]=eig(H,S) which will yield the eigenvalues and the eigenvectors in the

original basis.

http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/orthogonalization.m
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G. MacDonald’s Theorem

As discussed in subsection II E, the determinant of the matrix [H− Evar1] is a polynomial

in Evar , which we will call f(E), of order equal to the number of basis functions N . Non-

trivial solutions exist only for values of the energy for which this determinant vanishes.

These values correspond to the “roots” of this polynomial function of E.

Let’s assume we’re using 3 basis functions. Let’s further assume that the matrix elements

of the Hamiltonian are all real. We know, in addition, that the matrix is symmetric, so that

Hij = Hji. We can use the rules for evaluating a 3 × 3 determinant, so that, similarly to

Eq. (35), the secular determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − E H12 H13

H12 H22 − E H23

H13 H23 H33 − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (H11 −E)(H22 − E)(H33 − E) + 2H12H23H13 −H2
13(H22 − E) + · · · (55)

The qualitative dependence on E of this cubic function is depicted in Fig. (2). There

will be, in general, three of the cubic – values of E for which f(E)=0. These are shown

as small circles in Fig. (2). Diagonalization of the matrix H will yield 3 eigenvalues and

f(E)

E

FIG. 2. Dependence on energy of the determinant |H− E1| for a 3 × 3 system.

3 eigenvectors, which we designate ψn. We will prove here that root n (the nth eigenvalue) is

an upper bound to the energy of the nth state of the system. To do so we define a new set of

basis functions, of order N + 1, namely {ψ1, ψ2 , · · · ψN , φN+1}. In other words we replace

the first N basis functions by the linear combination of these functions that diagonalize the

N ×N matrix of the Hamiltonian, and then add on the original basis functions φN+1 In this
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new (N + 1)× (N + 1) basis, the matrix of the Hamiltonian is

H
(N+1) =

















E
(N)
1 · · · 0 h1
...

. . .
...

...

0 · · · E(N)
N hN

h1 · · · hN hN+1

















(56)

where hi = 〈ψi|H|φN+1〉 for i ≤ N and hN+1 = 〈φN+1|H|φN+1〉. Here E
(N)
i denotes the

ith linear variational energy in the basis of N functions. To obtain the energies in the

N+1×N+1 basis, we need to find the roots of the determinant of [H(N+1)−EI]. Explicitly,

this is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E
(N)
1 −E · · · 0 h1

...
. . .

...
...

0 · · · E(N)
N −E hN

h1 · · · hN hN+1 −E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (57)

Applying the rules for expansion of a determinant, you expand out Eq. (57) to give

(hN+1 − E)

N
∏

i=1

(E
(N)
i − E)−

N
∑

i=1

h2i

N
∏

j=1
j 6=i

(E
(N)
j − E) = 0 (58)

For an explicit example, consider the simplest case (N = 2). We will assume that E
(2)
1 is

less than (lower than) E
(2)
2 . The N + 1 = 3 secular determinant is

∣

∣

∣

∣

∣

∣

∣

∣

∣

E
(2)
1 − E 0 h1

0 E
(2)
2 − E h2

h1 h2 h3 − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (E
(2)
1 −E)(E(2)

2 −E)(h3−E)−h22(E
(2)
1 −E)−h21(E

(2)
2 −E) = f(E)

(59)

Now, if E = E
(2)
1 , then f(E = E

(2)
1 ) = −h21

[

E
(2)
2 −E

(2)
1

]

(all the other terms vanish).

This has to be negative, since E
(2)
1 ≤ E

(2)
2 . If, however, E = E

(2)
2 , then f(E = E

(2)
2 ) =

−h22
[

E
(2)
1 − E

(2)
2

]

, which has to be positive (by the same reasoning).

Thus, f(E) goes from negative to positive at E increases from E
(2)
1 to E

(2)
2 . In other

words there will be one root between E
(2)
1 and E = E

(2)
2 . Now, if E goes to negative infinity,
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then, Eq. (59) shows that

lim
E→−∞

f(E) = −E3 , (60)

which is positive (E is large and negative). Thus, since f(E) is negative at E = E
(2)
1 , a sign

change – and hence a root – will occur at an energy less than E
(2)
1 .

Problem 8

Show that f(E) also changes sign between E = E
(2)
2 and E = +∞.

Thus, the two roots for N = 2 are interleaved between the three roots for N = 3. This

interleaving will continue as N increases, as shown schematically in Fig. (3). Consequently,

E 

 

N=2 N=3 

1 

2 

N=large 

FIG. 3. Illustration of the placement of the linear variational roots as N , the size of the basis set,

increases.

we see that the nth eigenvalue obtained from a linear variational treatment is an upper

bound to the nth true energy. This is known as the Hylleraas-Undheim-MacDonald theorem,

discovered independently by Hylleraas and Undheim [E. Hylleraas and B. Undheim, Z. Phys.,

65, 759 (1930)] and MacDonald [J. K. L. MacDonald, Phys. Rev., 43, 830 (1933)].

H. DVR method for bound state energies

Many phenomena are interpreted by one-dimensional models. The Discrete Variable

Representation (DVR) method is a straightforward, accurate way to determine the energies
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and wavefunctions of bound states for any arbitrary one-dimensional potential.

Consider a one-dimensional Hamiltonian in Cartesian coordinates

H(x) = V (x)− 1

2m

d2

dx2
(61)

We will designate the true wavefunctions for this Hamiltonian as φi(x), where i denotes the

cardinal number of the energy (i=1 is the lowest energy, i = 2 is the energy of the first

excited state, etc). These wavefunctions are assumed to be orthonormal, so that

〈φi|φj〉 = δij (62)

Also, since the φi are solutions to the Schrodinger equation, the matrix of Ĥ is diagonal in

the {φi} basis, namely

〈φi|H|φj〉 = δijEj (63)

Now, suppose that we wanted to evaluate the 〈φi|H |φj〉 matrix element by numerical

integration. To do so we divide the range of x over which the wavefunction is appreciably

greater than zero into N sectors of equal width h. The initial and final values of x are

denoted x0 and xN . We’ll use a repeated trapezoidal rule for integration, [M. Abramowitz

and I. Stegun, Handbook of Mathematical Functions, Chap. 25, p. 885], namely

∫ xN

x0

f(x)dx ∼= h

[

1

2
f(x = x0) + f(x = x1) + · · ·+ f(x = xN−1) +

1

2
f(xN)

]

(64)

Thus, the ijth matrix element of Ĥ is given by

〈φi|H|φj〉 ∼= h
N
∑

k=0

φi(xk)

[

V (xk)−
1

2m

d2

dx2

]

φj(xk) (65)

Note that we have ignored the factors of 1
2
which appear in Eq. (64) because we assume that

the range of integration is large enough that the wavefunctions φi vanish at the end points

for all values of i. In other words, φi(x0) = φj(x0) = φi(xN ) = φj(xN ) = 0

To evaluate the second derivative term, we use a 3-point finite difference approximation

http://www.nr.com/aands/
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for the 2nd derivative. [3] This is

d2f

dx2

∣

∣

∣

∣

x=xk

∼= f(x = xk+1)− 2f(x = xk) + f(x = xk−1)

h2
=
fk+1 + fk−1 − 2fk

h2
(66)

Thus, the expression for the ijth matrix element of H is

〈φi|H|φj〉 ∼=
N
∑

k=0

hφi(xk)

{

V (xk)φj(xk)−
1

2m
[φj(xk+1)− 2φj(xk) + φj(xk−1]

}

(67)

To simplify the notation we will define cki ≡ φi(xk) (in other words: cki is the value of the

ith wavefunction at x = xk), so that Eq. (67) can be written as

〈φi|H|φj〉 ∼= h
N
∑

k=0

cki

{

V (xk)ckj −
1

2m
[ck+1,j − 2ckj + ck−1,j]

}

(68)

This last equation can be written, formally, as a matrix equation

〈φi|H|φj〉 ∼= hci
T [V +T] cj (69)

where ci is a column vector (ci = [c1i c2i · · · ]), V is a diagonal matrix with elements Vkl =

δklV (x = xk) and T is a tri-diagonal matrix with elements Tkk = 1/mh2 and Tk,k±1 =

−1/(2mh2). (Remember that h here is the spacing of the numerical integration grid not

Planck’s constant.)

Let us now divide the column vectors by h−1/2 to get a new column vector

di = h−1/2
ci (70)

so that Eq. (69) becomes

〈φi|H|φj〉 ∼= di
T [V +T]dj (71)

The full matrix of the Hamiltonian, with matrix elements 〈φi|H|φj〉 given by Eq. (69),

can then be written in matrix notation as

H = D
T [V +T]D (72)
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where each column of the matrix D is given by di. But we know that 〈φi|H|φj〉 = δijEj.

This is equivalent to saying, in matrix notation, H = E, where E is a diagonal matrix with

elements Ei. Thus H = E = D
T [V +T]D.

Consequently, since D
T [V +T]D is equal to a diagonal matrix, and the matrices V

and T are symmetric, the matrix D is non other than the matrix of eigenvectors which

diagonalize the matrix [V +T]. The eigenvalues are, in the limit h→ 0, the true energies.

The eigenvectors di arising from this diagonalization are proportional [Eq. (70)] to the

values of the wave functions at the points x = xk. To check that everything is consistent,

remember that these wave functions should be orthonormal, as expressed in Eq. (62). If

we were to evaluate the overlap matrix elements by trapezoidal integration equivalent to

Eq. (64), using the ci eigenvectors, we would obtain

〈φi|φj〉 = δij =

N
∑

k=0

hckjcki = hcTj ci = d
T
j di (73)

The matrix D arising from computer diagonalization of the matrix of the Hamiltonian

[Eq. (72)] will be orthogonal, so that DT
D = 1, or, element-by-element, dT

i dj = δij. Con-

sequently, we conclude from Eq. (73) that the φi eigenvectors are orthogonal. The values of

the wavefunctions at the points x = xk are thus given by the cki coefficients. This method

then provides discrete representations (more often called discrete variable representations,

hence the name, DVR) of the wavefunctions. As the step size h goes to zero, these DVR

functions become the true wave functions.

The DVR method is only as accurate as the underlying numerical integration. Increasing

the number of points increases the size of the V and T matrices but (presumably) improves

the accuracy.

In actual practice, a slightly better approximation is obtained by a 5-point approxima-

tion [3] to the 2nd derivative, namely

d2f

dx2

∣

∣

∣

∣

x=xk

=
−fk+2 + 16fk+1 − 30fk + 16fk−1 − fk−2

12h2
(74)

which implies that the matrix T has five non-zero bands.
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Problem 9

The Matlab script dvr quartic.m carries out the DVR procedure for a quartic oscillator

approximation to the H2 harmonic oscillator with k4 = 11.3173 bohr−4. The script is

set up to use a three-point approximation to the T matrix. Input parameters are the

mass in atomic units mu (for H2 µ=0.5036 atomic mass units = 918.58 atomic units) the

value of the range delr with |r − re| ≤ delr bohr, and the approximate spacing hh.

The number of points is then determined as M=floor(2*delr/hh)+1 (we want M to be

an integer, which is ensured by the floor function, which reduces its argument to the

nearest integer. Finally, the exact spacing is determined as h=(rmax-rmin)/(M-1).

(a) Keeping the range fixed at delr = 0.6, and decreasing the spacing, determine

the maximum value of h for which you can converge the energies of the first two levels

to within 1e-5 hartree (10 µhartree).

(b) For a harmonic oscillator, the frequency varies inversely as the square root of the

mass. Assuming a quartic potential with the same value of k4, determine the dependence

on the reduced mass of the energy of the lowest level for H2, HD, and D2. Do these three

energies show the same E ∼ µ−1/2 dependence as the harmonic oscillator?

Problem 10

Consider a double-well potential

V (x) = Eo(Cx
4 − x2)

(a) Plot the potential for the following choice of parameters: Eo = 2×10−4 hartree/bohr2

and C = 0.045 bohr−2.

(b) Model each of the two equivalent wells as a harmonic oscillator. Determine the

effective force constant and obtain the energy as ε = Vmin + 1
2

√

k/µ, where Vmin is the

http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/dvr_quartic.m
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energy of the minimum of each of the wells. Assume the mass is that of a proton (mass

µ = 1 atomic mass unit = 1837 atomic units).

(c) rewrite the script dvr quartic.m to obtain the energies for the first 6 levels of

this double-well potential for a proton (mass µ = 1 atomic mass unit = 1837 atomic

units). The energy of the lowest state should be close to what you obtained in part (b).

Superimpose the position of these levels on your plot of the potential.

(d) Plot on one plot the wavefunctions of the first two states.

http://www2.chem.umd.edu/groups/alexander/chem691/matlab_files/dvr_quartic.m
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