Appendix B. The Born-Oppenheimer Approximation
The Hamiltonian for a polyatomic molecule is

H(R,7)=H, (R)+H ,(V;R) (1)

where R designates, collectively, the coordinates of all the nuclei and 7 denotes,

collectively, the coordinates of all the electrons. We have (in atomic units)

O | 2 Z.7.,
H,W(R):;Zﬁ@ﬁ (2)

where the index i runs over all the nuclei, M; is the mass of the i"" nucleus, and R; ;- 1s the

distance between nuclei i and i”. The electronic Hamiltonian is
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here the index j runs over all the electrons and r; ; is the distance between nucleus i and
electron j.
For each given set of nuclear coordinates R , We can, in principal, solve for a
complete set of electronic states
H, (7 R)§. (F:R) = E (R)§.) (3 R) (4)
We can then expand the full wavefunction (nuclei plus electrons) in terms of this

complete set of states, as follows

P(FR)=D, C, (R (F;R) (5)



The expansion coefficient depend on R . With expansion (5) the full Schroedinger

equation becomes

HFRYFR)= H,, (R+H,(FR) ¥ (FR)=EY(F:R)
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which E is the total energy (electrons plus nuclei).

If you insert Eq. (5) into Eq. (6), and then premultiply by ¢ (¥ :R) and integrate

over 7, you can show, knowing that the ¢’ (F :R) are orthogonal and normalized, that

you obtain
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where the angle brackets denote integration over all the electronic coordinates. This is a
set of coupled 2" order differential equations in the expansion coefficients C;.
If we neglect any off-diagonal couplings (retain just the k =/ term in the

summation), we obtain
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The integral in angle brackets can be broken up schematically as follows
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The first angle bracket on the right-hand-side can be eliminated because the ¢\ (7; R)
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functions are normalized, so that we obtain
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If we neglect the second and third terms on the right-hand-side of Eq. (10), then
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we obtain the Born-Oppenheimer approximation, in which Eq. (8) becomes
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Thus the sum of the R dependent electronic energy and the nuclear repulsion energy
provide the effective potential energy for the C ,(ﬁ) functions, which describe the motion
of the nuclei. The total wavefunction [Eq. (5)] becomes, in the B.O. approximation
¥,(7: R)=C,(R)9; (7 R) (12)
which is a product of a nuclear function times the electronic wavefunction.

In fact, Eq. (11) can be easily corrected by including the second derivative term

from Eq. (11), as follows:
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