Appendix B. The Born-Oppenheimer Approximation

The Hamiltonian for a polyatomic molecule is

$$
\begin{equation*}
H(\vec{R}, \vec{r})=H_{n u c}(\vec{R})+H_{e l}(\vec{r} ; \vec{R}) \tag{1}
\end{equation*}
$$

where \vec{R} designates, collectively, the coordinates of all the nuclei and \vec{r} denotes, collectively, the coordinates of all the electrons. We have (in atomic units)

$$
\begin{equation*}
H_{n u c}(\vec{R})=\frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}+\sum_{\substack{i, i^{\prime} \\ i^{\prime}>i}} \frac{Z_{i} Z_{i i^{\prime}}}{R_{i i^{\prime}}} \tag{2}
\end{equation*}
$$

where the index i runs over all the nuclei, M_{i} is the mass of the $i^{t h}$ nucleus, and $R_{i i}$, is the distance between nuclei i and i^{\prime}. The electronic Hamiltonian is

$$
\begin{equation*}
H_{e l}(\vec{r} ; \vec{R})=\frac{-1}{2} \sum_{j} \nabla_{j}^{2}-\sum_{\substack{i, j \\ i}} \frac{Z_{i}}{r_{i j}}+\sum_{\substack{j, j^{\prime} \\ j^{\prime}>j}} \frac{1}{r_{j j^{\prime}}} \tag{3}
\end{equation*}
$$

here the index j runs over all the electrons and $r_{i j}$ is the distance between nucleus i and electron j.

For each given set of nuclear coordinates \vec{R}, we can, in principal, solve for a complete set of electronic states

$$
\begin{equation*}
H_{e l}(\vec{r} ; \vec{R}) \phi_{e l}^{(k)}(\vec{r} ; \vec{R})=E_{e l}^{(k)}(\vec{R}) \phi_{e l}^{(k)}(\vec{r} ; \vec{R}) \tag{4}
\end{equation*}
$$

We can then expand the full wavefunction (nuclei plus electrons) in terms of this complete set of states, as follows

$$
\begin{equation*}
\Psi(\vec{r} ; \vec{R})=\sum_{k} C_{k}(\vec{R}) \phi_{e l}^{(k)}(\vec{r} ; \vec{R}) \tag{5}
\end{equation*}
$$

The expansion coefficient depend on \vec{R}. With expansion (5) the full Schroedinger equation becomes

$$
\begin{equation*}
H(\vec{r} ; \vec{R}) \Psi(\vec{r} ; \vec{R})=\left[H_{n u c}(\vec{R})+H_{e l}(\vec{r} ; \vec{R})\right] \Psi(\vec{r} ; \vec{R})=E \Psi(\vec{r} ; \vec{R}) \tag{6}
\end{equation*}
$$

which E is the total energy (electrons plus nuclei).
If you insert Eq. (5) into Eq. (6), and then premultiply by $\phi_{e l}^{(l)}(\vec{r} ; \vec{R})$ and integrate over \vec{r}, you can show, knowing that the $\phi_{e l}^{(k)}(\vec{r} ; \vec{R})$ are orthogonal and normalized, that you obtain

$$
\begin{equation*}
\left[\sum_{\substack{i, i^{\prime} \\ i_{i}>i}} \frac{Z_{i} Z_{i^{\prime}}}{R_{i i^{\prime}}}+E_{e l}^{(l)}\right] C_{l}(\vec{R})+\sum_{k}\left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}\left|C_{k}(\vec{R}) \phi_{e l}^{(k)}(\vec{r} ; \vec{R})\right\rangle=E C_{l}(\vec{R}) \tag{7}
\end{equation*}
$$

where the angle brackets denote integration over all the electronic coordinates. This is a set of coupled $2^{\text {nd }}$ order differential equations in the expansion coefficients C_{l}.

If we neglect any off-diagonal couplings (retain just the $k=l$ term in the summation), we obtain

$$
\begin{equation*}
\left[\sum_{\substack{i, i^{\prime} \\ i>i}} \frac{Z_{i} Z_{i^{\prime}}}{R_{i i^{\prime}}}+E_{e l}^{(l)}\right] C_{l}(\vec{R})+\left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}{ }^{2}}{M_{i}}\left|C_{l}(\vec{R}) \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle=E C_{l}(\vec{R}) \tag{8}
\end{equation*}
$$

The integral in angle brackets can be broken up schematically as follows

$$
\begin{align*}
& \left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}\left|C_{l}(\vec{R}) \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle= \\
& \left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R}) \mid \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}} C_{l}(\vec{R})- \tag{9}\\
& \sum_{i} \frac{1}{M_{i}}\left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R}) \mid \nabla_{i} \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle \cdot \nabla_{i} C_{l}(\vec{R})+ \\
& \left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}\left|\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle C_{l}(\vec{R})
\end{align*}
$$

The first angle bracket on the right-hand-side can be eliminated because the $\phi_{e l}^{(l)}(\vec{r} ; \vec{R})$ functions are normalized, so that we obtain

$$
\begin{align*}
& \left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}\left|C_{l}(\vec{R}) \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle=\frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}} C_{l}(\vec{R})- \\
& \sum_{i} \frac{1}{M_{i}}\left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R}) \mid \nabla_{i} \phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle \cdot \nabla_{i} C_{l}(\vec{R})+ \tag{10}\\
& \left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}\left|\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle C_{l}(\vec{R})
\end{align*}
$$

If we neglect the second and third terms on the right-hand-side of Eq. (10), then we obtain the Born-Oppenheimer approximation, in which Eq. (8) becomes

$$
\begin{equation*}
\left[\frac{-1}{2} \sum_{i} \frac{\nabla_{i}^{2}}{M_{i}}+\sum_{\substack{i, i^{\prime} \\ i \gg i}} \frac{Z_{i} Z_{i^{\prime}}}{R_{i i^{\prime}}}+E_{e l}^{(l)}(R)\right] C_{l}(\vec{R})=E C_{l}(\vec{R}) \tag{11}
\end{equation*}
$$

Thus the sum of the \vec{R} dependent electronic energy and the nuclear repulsion energy provide the effective potential energy for the $C_{l}(\vec{R})$ functions, which describe the motion of the nuclei. The total wavefunction [Eq. (5)] becomes, in the B.O. approximation

$$
\begin{equation*}
\Psi_{l}(\vec{r} ; \vec{R})=C_{l}(\vec{R}) \phi_{e l}^{(l)}(\vec{r} ; \vec{R}) \tag{12}
\end{equation*}
$$

which is a product of a nuclear function times the electronic wavefunction.
In fact, Eq. (11) can be easily corrected by including the second derivative term from Eq. (11), as follows:

$$
\begin{equation*}
\left[\frac{-1}{2} \sum_{i} \frac{\nabla_{i}{ }^{2}}{M_{i}}+\sum_{\substack{i, i^{\prime} \\ i>i}} \frac{Z_{i} Z_{i^{\prime}}}{R_{i i^{\prime}}}+E_{e l}^{(l)}(R)+\left\langle\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right| \frac{-1}{2} \sum_{i} \frac{\nabla_{i}{ }^{2}}{M_{i}}\left|\phi_{e l}^{(l)}(\vec{r} ; \vec{R})\right\rangle\right] C_{l}(\vec{R})=E C_{l}(\vec{R}) \tag{13}
\end{equation*}
$$

