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mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh]; % H + H2

E = 0.03; % scattering energy (hartree)

% generate mesh

[p,t,pf,bnd] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.2,'vhh2');

% scattering calculation

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,0,1,'vhh2',4);

% plot probability density

hold on;

tricontour(pn,tln,abs(psi{1}(:,1)).^2,10);

plot(bnd(:,1),bnd(:,2),'linewidth',2,'color','k');

axis([1 6 0.4 5]);

axis off
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The COLSCAT2D© package was written by Michael Warehime with contributions by Dvir Kafri
and Millard H. Alexander. Support for its development was provided by grants (to MHA) from the
U. S. National Science Foundation. Copyright 2013, 2014, University of Maryland, College Park. All
rights reserved.

BY USE OF PART OR ALL OF THE COLSCAT2D© PACKAGE, YOU ARE CONSENTING TO BE BOUND
BY AND ARE BECOMING A PARTY TO THIS AGREEMENT. IF YOU DO NOT AGREE TO ALL OF THE
TERMS OF THIS AGREEMENT, DELETE THE SOFTWARE. COLSCAT2DEND USER LICENSE AGREE-
MENT NO FEE VERSION (EXPORT VERSION ONLY)
GRANT. Michael Warehime (”MW”), Millard Alexander (”MHA”) and their collaborators hereby grant you a non-
exclusive license to use the COLSCAT2D© software package (”Software”) free of charge if (a) you are a student,
faculty member or staff member of an educational institution (K-12, junior college, college, or university) or an
employee of a charitable non-profit or not-for-profit organization. The evaluation period for use by or on behalf of
a commercial entity is limited to 90 days; evaluation use by others is not subject to this restriction. Government
agencies are considered charitable non-profit organizations for purposes of this license agreement. If you do not
fit within the description above, please contact Millard Alexander, Department of Chemistry and Biochemistry,
University of Maryland, College Park, MD 20742 (fax: 301.314.9121, email: mha@umd.edu). If you are using the
Software free of charge, you will be entitled to support or telephone assistance only insofar as such may be available
from MW or MHA.
If you fit within the above description, you may use the Software on any single computer or copy the Software for
archival purposes.
You may not:
Permit other individuals to use the Software except under the terms listed above.
Modify, translate, reverse engineer, decompile, disassemble (except to the extent applicable laws specifically prohibit
such restriction), or create derivative works based on the Software, except if such modification, translation or reverse
engineering is for your own personal use, or for research purposes in your own research group.
Copy the Software (except for back-up purposes).
Rent, lease, transfer or otherwise transfer rights to the Software
SOFTWARE. This license does not grant you any right to any enhancement or update.
TITLE. Title, ownership rights, and intellectual property rights in and to the Software shall remain with MW, MHA and
their collaborators. The Software is protected by the copyright laws of the United States and international copyright treaties.
Title, ownership rights, and intellectual property rights in and to the content accessed through the Software is the property
of the applicable content owner and may be protected by applicable copyright or other law. This License gives you no rights
to such content.
PUBLICATIONS: All publications in scientific journals or technical reports, refereed or otherwise, which result from use of
the propagators included in the Software must include the following references:
to be completed
In addition, any reference to the Software within any articles and/or technical reports must include the following reference:
COLSCAT2D© is a package of programs for solutions of time-independent two-dimensional reactive scattering by Michael
Warehime with contributions by Dvir Kafri and Millard H. Alexander.

DISCLAIMER OF WARRANTY. Since the Software is provided free of charge, the Software is provided on an ”AS IS” basis,

without warranty of any kind, including without limitation the warranties of merchantability, fitness for a particular purpose

and non-infringement. The entire risk as to the quality and performance of the Software is borne by you. Should the Software

prove defective, you and not MW, MHA, or any of their associates assume the entire cost of any service and repair. This

disclaimer of warranty constitutes an essential part of the agreement. SOME STATES DO NOT ALLOW EXCLUSIONS

OF AN IMPLIED WARRANTY, SO THIS DISCLAIMER MAY NOT APPLY TO YOU AND YOU MAY HAVE OTHER

LEGAL RIGHTS THAT VARY FROM STATE TO STATE OR BY JURISDICTION.

LIMITATION OF LIABILITY. UNDER NO CIRCUMSTANCES ANDUNDER NO LEGAL THEORY, TORT, CONTRACT,

OR OTHERWISE, SHALL MW, MHA OR THEIR COLLABORATORS OR ASSOCIATES BE LIABLE TO YOU OR

ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY

CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE,

SOFTWARE FAILURE OR MALFUNCTION, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER

COMMERCIAL DAMAGES OR LOSSES. IN NO EVENT WILL MW OR MHA BE LIABLE FOR ANY DAMAGES, EVEN

IF MW OR MHA SHALL HAVE BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM

BY ANY OTHER PARTY. THIS LIMITATION OF LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH

OR PERSONAL INJURY TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION. FURTHERMORE,

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAM-

AGES, SO THIS LIMITATION AND EXCLUSION MAY NOT APPLY TO YOU.

TERMINATION. This license will terminate automatically if you fail to comply with the limitations described above. On
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termination, you must destroy all copies of the Software.

EXPORT CONTROLS. None of the Software or underlying information or technology may be downloaded or otherwise ex-

ported or reexported (i) into (or to a national or resident of) Cuba, Iraq, Libya, Yugoslavia, North Korea, Iran, Syria or any

other country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury Department’s list of Specially

Designated Nationals or the U.S. Commerce Department’s Table of Deny Orders. By downloading or using the Software, you

are agreeing to the foregoing and you are representing and warranting that you are not located in, under the control of, or a

national or resident of any such country or on any such list.

MISCELLANEOUS. This Agreement represents the complete agreement concerning this license between the parties and su-

persedes all prior agreements and representations between them. It may be amended only by a writing executed by both

parties. If any provision of this Agreement is held to be unenforceable for any reason, such provision shall be reformed only to

the extent necessary to make it enforceable. This Agreement shall be governed by and construed under Maryland law as such

law applies to agreements between Maryland residents entered into and to be performed within Maryland, except as governed

by Federal law. The application the United Nations Convention of Contracts for the International Sale of Goods is expressly

excluded.

U.S. Government Restricted Rights. Use, duplication or disclosure by the Government is subject to restrictions set forth in

subparagraphs (a) through (d) of the Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or

in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and in

similar clauses in the NASA FAR Supplement. Contractor/manufacturer is Millard Alexander, Department of Chemistry and

Biochemistry, University of Maryland, College Park, MD 20742-2021.
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1 Introduction

1.1 What is COLSCAT2D?

COLSCAT2Dor COLlinear atom-diatom SCATtering is a MATLAB script to use the finite element
method to solve numerically quantum scattering dynamics for collinear atom-diatom systems. The
suite of subroutines provided can be used for any A+BC→AB+C collinear reaction.

1.2 Download and Installation

The source code is available for download from http://www2.chem.umd.edu/groups/alexander/FEM.
To ensure that all subroutines are accessible add theCOLSCAT2D folder to the MATLAB search path.
In release 2013 of MATLAB the search path is accessed on the ‘HOME’ tab, in the ‘ENVIRONMENT’
field. Be sure to select the ‘add with subfolders’ option and then browse for the location of your local
COLSCAT2Ddirectory.

1.3 Related Works

The COLSCAT2D reference manual complements the published work of Mick Warehime and Millard
Alexander. [?, ?] The descriptions of many of the subroutines inCOLSCAT2D refer to this publication.

1.4 How to Read this Manual

The manual is broken into six parts:

i. Overview of the steps involved in a reactive scattering calculation (section 3)

ii. Introduction to the design and operation of the software (section 4).

iii. Tutorials on how to perform reactive scattering calculations (section 5).

iv. Description of parallelization procedures (section 6).

v. Brief explanation of the components of the COLSCAT2Dpackage (section 7).

vi. Details of the functions/subroutines themselves, including the input and output call lists for each
of the major subroutines, and, in many cases, examples of how to use the functions/subroutine.
This last section is intended to facilitate the improvement and extension of COLSCAT2D .

The tutorials provide input files to calculate reactive scattering dynamics for several exemplary sys-
tems. Learning from these tutorials, the user can create inputs for new systems or modify (by isotopic
substitution, for example) the prepared inputs.

Much of the first half of this manual shows how to take advantage of the powerful visualization ca-
pabilities contained in MATLAB. If you are interested in expanding the scope of COLSCAT2D , you
should find enough details here to let you extend the existing code. Do not hesitate to contact MW
for more information about any of the information provided in this manual.

The reader is assumed to have a working knowledge of MATLAB.
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1.5 Authors and Acknowledgements
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2 Quickstart Guide

This section is designed for those users who aren’t interested in the details of COLSCAT2Dand want
to just start calculating things. First we recommend running the pre-made inputs hh2.m, fh2.m , and
fhcl.m to ensure that the COLSCAT2Ddirectory has been successfully linked to MATLAB’s search
path. Once these three inputs have been tested you are ready to create your own input files.

Besides specifying the mass of each atom in atomic units and the desired scattering energies (total
system energy in hartrees) there are two important things that need to be defined

1) potential energy function - this routine needs to have the exact input/output format as outlined
below in subsection 7.28.

2) triangulation data - the outputs from meshgen.m, i.e. p, t, and pf from subsection 7.16. You
can use a hand made mesh made up of nodal points p and connectivity matrix t. colscat2d.m
Will be expecting pf as an input which define the limits of reactant and product boundary, as
is shown in Figure 7.16.

With a working potential energy function and properly defined mesh you can easily run the colsca2dt.m
subroutine to determine the scattering dynamics of your system. Consult the examples below on how
to visualize the scattering probabilities (subsection 5.1) or the scattering wave function or probability
density, its current, and curl (subsection 5.5).

3 Time-independent scattering

A scattering calculation in a time-independent framework, regardless of the method used, involves a
few key steps: (Here we make reference, wherever possible, to our published paper [?])

• Specification of the system
A (collinear) chemical reaction is defined by the masses of the atoms and by the potential energy
surface. The masses of the atoms determines the transformation between the bond, Jacobi and
mass-weighted Jacobi coordinate systems, as well as the angle of rotation between the Jacobi
coordinates appropriate to the reactants and to the products. See Sec. IIA of [?].

Subsequently, and most importantly, the reaction is controlled by a potential energy surface.
Any user must provide a script to determine the PES for the system of interest in the directory
inputs. Potential energy surfaces for the H+H2, F+H2, and F+HCl systems are provided
already in the distribution.

Finally, it is necessary to specify the grid of energies for the subsequent scattering calculations.

• Specification of the physical domain and mesh

In the finite-element method the wave function is expanded in piecewise functions defined on a
triangular A typical domain for reactive scattering in two dimensions, in shown in Fig. 1 of [?].
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This is defined by the maximum values of the Jacobi A+BC and AB+C separation distances
and the values of the potential energy which define the inner and outer boundaries.

With the physical domain fixed, by specifying the approximate size of triangles in the mesh and
the connectivity, we create the triangular In practice this is done with a customized version of
Persson and Strang’s distmesh. [?]

• Specification of the asymptotic vibrational states

In the generic A+BC→AB+C reaction, atom A collides with molecule BC in vibrational level
va. The outcome can be

◦ elastic: A+BC(v)→ A+BC(v)

◦ non-reactive, but inelastic: A+BC(v)→A+BC(v′ ̸=v)

◦ reactive: A+BC(v)→ AB(v′)+C

The amplitude for each of these processes is obtained directly from the FEM calculation per-
formed in COLSCAT2D . The vibrational wave functions must be obtained before carrying out
the scattering calculation.

• Scattering Calculation

At this point, we then loop over a vector of collision energies, to obtain the scattering amplitudes
for elastic, inelastic, and reactive outcomes. This involves a number of steps:

a. Building the FEM matrix

On the triangulation mesh we need to determine the matrix representation of T̂+2µ(V̂ −E).
This is the A matrix defined in Eq. (26) of [?].

b. Extending the FEM matrix

Then, to accommodate the undefined boundary conditions of a scattering problem, we need
to build the rectangular B, F and I matrices which appear in Eq. (30) of [?].

c. Building the inhomogenous part

Finally, we need to build the right-hand-side vector, b, (or triangular right-hand-side ma-
trix) in Eq. (30) of [?].

d. Solving the linear equations

The wave function and the S-Matrix are solutions to a set of linear equations [Eq. (30) of
[?]. To solve these, we make use of MATLAB’s powerful backslash (\) superoperator [?].

• Post-processing

After repeating steps (a)–(d) at each desired energy, the script then post-processes the data
generated to extract the scattering amplitudes and the wave functions. One can also generate
the probability density current field and its curl.
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4 How COLSCAT2DWorks

In this section we provide a step by step analysis of how colscat2d.m works. We show the code in
its entirety to facilitate this discussion.

colscat.m: main driver script

1 % COLlinear atom-diatom SCATtering

2 function [n,r,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,iState,iSurf,vinput,n)

3 % add points to account for the polynomial order n

4 [pn,tn,tln,np] = polymesh(p,t,n);

5
6 %% determine the points on the boundary of the mesh

7 [ba,bc,pn] = boundaryind(pn,pf);

8
9 %% paramater structure (reduced masses and transformation parameters)

10 M = mass(m);

11
12 %% potential energy function (in terms of bond coordinates)

13 pb = tobond(pn,m);

14 [v,va,vc,ns] = feval(vinput,pb(:,1),pb(:,2),ba,bc);

15
16 % boundary unscaled jacobi coordinates

17 [Ra,ra,Rc,rc] = jacobi(pn,ba,bc,M);

18
19 % boundary vibrational functions

20 viba = cell(ns,1); vibc = cell(ns,1);

21 for ii=1:ns

22 viba{ii} = vibfem(ra,va(:,ii),M.mubc,n);

23 vibc{ii} = vibfem(rc,vc(:,ii),M.muab,n);

24 end

25
26 %% FEM MATRICES (2nd order 2D)

27 [T,V,O] = fem2d(pn,tn,v,n);

28
29 %% Scattering probabilities as a function of energy

30 le = length(E); U = cell(le,1);

31 parfor jj = 1:le

32 U{jj} = solver2d(E(jj),T,V,O,M,viba,vibc,iState,iSurf,ba,bc,np,ns,Ra,Rc);

33 end

34
35 % post process the parallel data

36 [n,r,psi] = nrsort2d(U,le,np,ns,iState,max(E),viba,vibc);

line 2 - User Defined Inputs
There are nine user input parameters; the mass vector m = [ma, mb, mc] in atomic units, the vec-
tor containing the scattering energies (total energy), E, in hartrees, the list of nodal points, p, the
connectivity matrix, t, the points at the corner of each boundary, pf, the initial vibrational state
of the reactants, iState, the initial electronic surface of the system iSurf (for single electronic sur-
face calculations this should always be 1), the potential energy subroutine function handle vinput

and finally the polynomial order of the FEM basis functions n. We give three sample input files:
COLSCAT/inputs/hh2/hh2.m, COLSCAT/inputs/fh2/fh2.m and COLSCAT/inputs/fhcl/fhcl.m.

The most important inputs are the mesh, defined by the nodal points p and the connectivity matrix
t, and the specification of the potential energy function, which is defined by a reference to a function
handle in the string vinput. In subsection 7.16 and subsection 7.28 we provide more details on how
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to prepare these inputs.

line 4 - Polymesh
COLSCAT2Dallows you to perform a FEM calculation using polynomial basis functions up to order
5. In order to do this we have to add additional nodes, which are stored in pn, the new connectivity
matrix tn, and a linearized form of this same connectivity matrix tl which can be used to plot the
wave function.

line 7 - Boundary
Once the additional nodes have been added to the mesh we need to know which nodal points lie on the
boundary. This is accomplished via the boundaryind.m subroutine. The boundary subroutine also
‘straightens’ the boundaries and accordingly returns the nodal points as an output. This straightening
is required because the mesh generation routine of Persson and Strang [?] does not fix the bound-
aries to a single line. This subroutine works by first finding all points near the readtant and product
boundaries within some tolerance and then fixes them to the straight line defined between the points
in pf.

line 10 - Reduced Masses/Transformation Parameters
Given the user defined inputs, COLSCAT2Dfirst calculates the relevant reduced mass parameters
and the transformation parameters. These transformation parameters include the λ scale factors for
the transformation to mass-weighted Jacobi coordinates and the skew angle between the reactant and
product coordinate systems. These parameters are described in Sec. 2 of the original paper [?] and
here in subsection 7.12.

line 13-14 - Potential Energy Surface
Next COLSCAT2D invokes the potential energy input function (described in Section subsection 7.28)
to determine the PES at the nodal points. Note vinput takes values in terms of bond coordinates,
i.e. pb, rather than mass-scaled Jacobi coordinates, i.e. p, because it is typical that the potential
energy surface is known in terms of these bond coordinates. This output of the potential energy input
function must also provide the potential energy along the reactants boundary, va, and the products
boundary, vc, which are used in the next step. This subroutine also returns the number of electronic
surfaces used in the calculation. Again, for now this parameter, ns is always 1.

lines 18-25 - Boundary Vibrational Structure
The jacobi.m subroutine returns the unscaled diatomic Jacobi coordinates for the reactant arrange-
ment (the BC diatomic separation coordinate, ra, as well for the product arrangement (the AB di-
atomic separation coordinate, rc. These unscaled Jacobi coordinates are used to evaluate the boundary
vibrational wave functions, χγ , in Eq. (12) of the original paper. [?]

Next these vibrational wave functions on both the reactants, χa, and products, χa, boundaries are
calculated. To determine the boundary vibrational wave functions for the reactant diatomic, for exam-
ple, one passes the reactant unscaled Jacobi diatomic separation coordinate, ra, the potential energy
surface evaluated at the reactant nodes, va, and the reduced mass of the reactant diatom, M.mubc,
to the vibfem.m subroutine. This routine uses a 1-dimensional, PN (N-th order polynomial hat func-
tions) finite element code to calculate one bound-state wave function for each nodal point on the given
boundary, the energy associated with each of these bound state wave functions.

The vibfem.m subroutine uses the bound state wave functions as well as the overlap matrix from the
1D PN FEM calculation to determine the boundary integrals, i.e. the integral appearing in Eq. (44) of
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the original paper. [?] Furthermore, the for loop found is part of COLSCAT2D ’s ability to perform
calculations on multiple, coupled electronic surfaces. This will be discussed in a future update.

line 28 - FE Matrices
With values of the potential energy surface at the nodal points, COLSCAT2Ddetermines the finite-
element matrices, V, T and O [Eqs. (15-17) in the original paper [?]]. The values of the integrals
themselves are linear combinations of the values of the mass-scaled Jacobi coordinates of each nodal
point T and O, and in the case of the potential matrix V, linear combinations of the PES at the nodal
points.

The are five scripts PNintegrals2d.m, where N = 1:5, (??) show how the coefficients of these linear
combinations are determined, (integrals of the PN basis functions in standard triangle coordinates),
once and hard-coded for every scattering calculation. This hard-coding allows the FEM matrices to
be built using MATLAB’s sparse.m subroutine, i.e. a vectorized sparse matrix construction operation.

lines 31-34 - Solver Subroutine
The next step is to call the main solver routine. Directly outside of the call to the solver2d.m

subroutine is a for loop over all values of the total energy. This is an input vector, in the form
E = E1 : ∆E : E2. Scattering calculations are done at all energies from E1 to E2 in steps of ∆E. If the
MATLAB Parallel Computing Toolbox (PCT) is available, replace for by parfor. This replacement
instructs MATLAB to parallelize this loop over energy transparently, requiring no input from the user.
In section 6 we provide more information about the implementation of parallelization.

Again to facilitate discussion of this subroutine we include the MATLAB script solver2d.m in its
entirety.

solver2d.m extends the FEM problem and solves the scattering problem

1 function U = solver2d(E,T,V,O,M,viba,vibc,iState,iSurf,ba,bc,np,ns)

2
3 % account for matlabs nonzero indexing v=[0,1,2,3] --> v=[1,2,3,4]

4 iState = iState+1;

5
6 % define the A matrix (Eq (32))

7 A = T+2*M.mu*(V-E*O);

8
9 % get the extension submatrices

10 [B ,F ,I] = extendmat2d(viba,vibc,ba,bc,M,E,np,ns);

11
12 % the r.h.s. for all initial states

13 b = extendrhs2d(viba,ba,bc,iState,iSurf,M,E,np,ns);

14
15 % extend the FEM system

16 Q = [A, -B; I, -F];

17
18 % solve linear system (Eq (30))

19 U = Q\b;

11



line 4
The first step in the solver2d.m subroutine is add 1 to the iState variable. This is because MAT-
LAB’s indexing starts from 1, and quantum numbers, such as the vibrational quantum index, v, start
at 0.

line 7
Next the unextended FEM matrix, A, is constructed. This makes up the left hand side of Schrödinger’s
equation. It should be noted that 2D bound state problems can be solved by determining the eigenvalues
of the A matrix, however we only consider reactive potential surfaces in this work.

line 10
The next step is to extend the FEM matrix problem, i.e. implement Eq. 30 in the referenced paper [?].
To do this the vibrational structures, initial state and initial electronic surface vectors as well some
descriptive parameters are passed to the extendmat2d.m subroutine.

The extendmat2d.m subroutine is one of the most dense and opaque subroutines provided in the
COLSCAT2Dpackage. In summary this subroutine calculates the outgoing integrated boundary
conditions on the reactant and product boundaries, (Ba and Bc), and standard outgoing boundary
conditions on the reactant product boundaries, (Fa and Fc). Next extendmat2d.m uses the boundary
indices, ba and bc, and the built-in sparse.m routine to build the B, I and F matrices.

line 13
Once the FEM matrix extensions have been calculated, solver2d.m calculates the r.h.s. of Eq. (30),
using extendrhs2d.m. This subroutine calculates the incoming integrated and standard boundary
conditions, bi, and fi, and builds the sparse components the r.h.s. of the extended linear system
referred to above and stores this in the b matrix in Eq. 30.

line 16
The solver2d.m routine then builds the extended FEM matrix, Q, and

line 19
finally solver2d.m uses MATLAB’s ’\’ superoperator [?] to solve the linear system QU = b. It is
called a superoperator because it checks the size (square vs rectangular) and type (sparse vs full) of
the matrix that it tries to invert, in this case Q, and chooses the appropriate algorithm. MATLAB’s
built-in matrix division is very impressive and furthermore incredibly simple to implement. The curi-
ous user may try full(Q)\full(b) instead of the call on line 25 of solver2d.m to see just how fast
and accurate the sparse matrix division algorithm hidden in the ’\’ operator really is.

It should be noted that the information at the ith scattering energy, namely the decomposition of the
’Q’ matrix, could in theory be passed to the solver to precondition the solution at the i+1th energy. The
speeds we observe are so fast that this has not been necessary so far, however, it may be a potential
source of optimization in the future.

line 37 - Parse the Parallel Data
The outputs of MATLAB’s parfor loops must be stored in cell type variables. In this case the parfor
loop is over energy values, and accordingly, the data is indexed by energy. Ultimately, nrsort2d.m
changes the data storage from indexed by energy to indexed by electronic surface and initial conditions
which greatly simplifies plotting the data.
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5 COLSCAT Examples

5.1 Tutorial A: H+H2 Scattering Probabilities

This example treats collinear H+H2 scattering dynamics on a single potential energy surface. The
following input file generates both non-reactive and reactive probabilities as a function of total energy.
The potential energy surface provided here for this system is that of Mielke et al. [?], which is calculated
by the script vhh2.m. As part of the input file, we pass the reference name ′vhh2′ to the desired
potential energy surface. More details on constructing the script for the potential energy surface are
given in subsection 7.28.

this section constitutes the first bullet item in Sec. 3

% symmetric scattering example H+H2

mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh]; % [H,H,H]

E = 0.01:0.0001:0.06; % energy range

iState = 0; % initial vibrational state of reactants

%% calulate mesh for HH2 problem

[p,t,pf] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.3,'vhh2');

%% main scattering calculation using Polynomial order 4 basis functions, P4

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,iState,1,'vhh2',4);

% collision energy in eV

ecol = (E-viba{1}.e(1))*27.211;

figure(1)

plot(ecol,N{1})

legend('0-0','0-1','0-2')

title('Non-Reactive Probabilities for H + H_2(v=0)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])

set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')

figure(2)

plot(ecol,R{1})

legend('0-0','0-1','0-2')

title('Reactive Probabilities for H + H_2(v=0)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])

set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')
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Figure 1: (Left) Plotted output from the script subsection 5.3, combining MATLAB figures (1) and (2). The probability
to not react H+H2(v=0) → H+H2(v=0,1,2) as a function of collision energy. (right) The probability to react as a function
of collision energy for H+H2(v=0) → H2(v=0,1,2) + H.

5.2 Tutorial B: Vibrationally Excited States

The input variable ′iState′ allows the user to change the vibrational state of the reactant diatomic
species. In the previous calculation the input parameter ′iState=0′ was used to investigate the dy-
namics of the reaction H+H2(v=0). By simply changing this value to ′iState=1′ study reaction of
the vibrationally excited state H+H2(v=1). The results of this calculation are shown below.
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Figure 2: Vibrationally Excited Reactants. (left) Inelastic scattering probabilities, i.e. non-reactive probabilities, for
the reaction of H+H2(v=1) → H+H2(v=0,1,2) as a function of collision energy. (right) Reactive scattering probabilities
for this same vibrationally excited system.
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5.3 Tutorial C: Multiple Initial Conditions

Not only is it easy to experiment with vibrationally excited reactants, COLSCAT2Dmakes it very
easy to calculate the entire S-matrix in a single calculation. By changing the parameter ′iState′

from a scalar to a vector, you can sample multiple initial conditions in a single calculation. This is
particularly convenient for two reasons: a) it speeds up the total calculation time because the matrix
decomposition, which is the slowest part of the code, is only done once for multiple r.h.s.’s and b) the
data for multiple initial conditions is stored and handled efficiently for post processing. Comparing
the input prepared below with that above in subsection 5.1 reveals how easy it is to calculate the
scattering dynamics of multiple initial conditions simultaneously.

% symmetric scattering example H+H2

mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh]; % [H,H,H]

E = 0.01:0.0001:0.06; % energy range

iState = 1:2; % initial vibrational state of reactants

iSurf = [1 1]; % initial electronic surfaces (for 1 state both entries must be 1)

%% calulate mesh for HH2 problem

[p,t,pf] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.3,'vhh2');

%% main scattering calculation using Polynomial order 4 basis functions, P4

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,iState,iSurf,'vhh2',4);

% collision energy in eV

ecol = (E-viba{1}.e(1))*27.211;

figure(1)

plot(ecol,R{1})

legend('1-0','1-1','1-2')

title('Reactive Probabilities for H + H_2(v=1)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])

set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')

figure(2)

plot(ecol,R{2})

legend('2-0','2-1','2-2')

title('Reactive Probabilities for H + H_2(v=2)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])

set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')
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Figure 3: (left) Reactive scattering probabilities, i.e. non-reactive probabilities, for the reaction of H+H2(v=1)
→ H+H2(v=0,1,2) as a function of collision energy. (right) Reactive scattering probabilities for the H+H2(v=2) →
H+H2(v=0,1,2) system as a function of collision energy.

5.4 Tutorial D: H+DH – Isotopic Effects

COLSCAT2Dmakes it incredibly easy to analyze isotopic effects for collinear atom-diatom reactive
scattering dynamics. The following input code calculates the scattering dynamics for H+DH using
almost exactly the same input file as the H+H2 system. The only difference between the H+DH input
and the H+H2 input file are the factor of two in the definition of the mass vector m. Because the
potential energy does not depend on the masses of the involved nuclei, only their charge, we can use
the same potential energy routine as we did for the H+H2 calculation.

% Scattering Dynamics of H + DH

mh = 1836.15264; % mass of hydrogen in au

m = [mh,2*mh,mh]; % [H,D,H]

E = 0.01:0.0001:0.06; % energy range

%% calulate mesh for HDH problem

[p,t,pf] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.3,'vhh2');

%% main scattering calculation

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,0,1,'vhh2',4);

% collision energy in eV

ecol = (E-viba{1}.e(1))*27.211;

% plot reflection coefficients for first three vibrational states

figure(1)

plot(ecol,N{1})

legend('0-0','0-1','0-2')

title('Non-reactive Probabilities for H + DH(v=0)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])
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set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')

% plot reflection coefficients for first three vibrational states

figure(2)

plot(ecol,R{1})

legend('0-0','0-1','0-2')

title('Reactive Probabilities for H + DH(v=0)','fontsize',24)

set(gca,'fontsize',20)

axis([ecol([1 end]) 0 1])

set(gca,'xtick',0:.25:1.5)

xlabel('Collision Energy, eV')
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Figure 4: (left) Non-reactive (inelastic) H+DH(v=0) → H+DH(v=0,1,2) probabilities as a function of collision energy.
(right) Reactive H+DH(v=0) → HD(v=0,1,2)+H probabilities as a function of collision energy.
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5.5 Tutorial E: F+H2 – Probability Density, Density Current and its Curl

Another convenient aspect of the MATLAB implementation of COLSCAT2D is the ease with which
one can visualize the quantum nature of the scattering. As in the previous two examples we will use
a single state scattering calculation, F+H2, to illustrate the various built-in visualization capabilities.
Shown below, is the input file for the F+H2 reaction. Here, we have translated the Muckerman V
PES [?] to a fast and simple MATLAB script fh2 muck. The following script produces figures of the
reactive probabilities as a function of collision energy, the wave function for a given collision energy
and the probability density current field and the curl of this vector field.

clear all; close all; clc;

% reactive scattering of F+H2

mh = 1836.15264; % mass of hydrogen in au

m = mh*[19/1.008 1 1]; % [F,H,H]

E = 0.0099:0.0001:0.0282; % energy range

% calculate mesh with approximately

[p,t,pf] = meshgen(m,[8.5 8],[.8 9 .3 9],[.12 .4],0.2,'vfh2_MV');

% determine scattering probabilities and wave functions

tic

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,0,1,'vfh2_MV',3);

toc

% collision energy in eV

ecol = (E-viba{1}.e(1))*27.211;

ll = 73; % pick a scattering energy to analyze in figures 2-4

figure(1);

hold all;

plot(ecol,[R{1}(:,2)*100 R{1}(:,3:4)]);

plot(ecol([1 1]),[0 1],'k','linewidth',2);

title('Reactive Probabilities for F + H_2(v=0)','fontsize',24);

set(gca,'fontsize',20);

xlabel('Collision Energy, eV');

legend('0-1(X100)','0-2','0-3','location','north');

axis([ecol([1 end]) 0 1]);

figure(2)

tricontour(pn,tln,abs(psi{1}(:,ll)).^2,25);

text(7,4.75,'FH+H','fontsize',18);

text(8,0.4,'F+H_2','fontsize',18);

title('Probability Density E_{col} = 0.197 eV','fontsize',24);

set(gca,'fontsize',20);

axis off;

figure(3);

hold on

axis([3 9 0.5 5])

% classically forbidden region contour

tricontour(pn,tln,v,[E(ll) E(ll)]);

colormap([1,0,0]);

% current density

[Jx,Jy] = flux(tn,pn,psi{1}(:,ll),m);

% plot the prob current only at the original mesh (too many pts otherwise)
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x = p(:,1);y = p(:,2);

quiver(x(t(:)),y(t(:)),Jx(t(:)),Jy(t(:)));

title('Probability Density Current, E_{col} = 0.197 eV','fontsize',24);

text(7,4.75,'FH+H','fontsize',18);

text(8,0.4,'F+H_2','fontsize',18);

set(gca,'fontsize',20);

axis off;

figure(4);

curlZ = tricurl(tn,pn,psi{1}(:,ll),m);

tricontour(pn,tln,curlZ,15);

text(7,4.75,'FH+H','fontsize',18);

text(8,0.4,'F+H_2','fontsize',18);

title('Curl Density Current E_{col} = 0.197 eV','fontsize',24);

axis off;
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Figure 5: (top left) F+H2(v=0) → H+FH(v=1,2,3) reaction probabilities as a function of collision energy. The 0→1
probability is multiplied by a factor of 100 for clarity. The vertical black line marks a collision energy of 0.197 eV, to
which the three remaining panels refer. (top right) The probability density, |Ψ|2, for the reaction of H2(v=0); (bottom
left) the current density density field, the red lines delimit the classically forbidden region; (bottom right) the vector curl
of the current density density field.
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5.6 Tutorial F: F+HCl – Two State scattering

In this tutorial we outline how to use COLSCAT2D for coupled potential calculations. To start we
analyze the potential energy surface subroutine for the two state F+HCl reactive scattering calculation.

function [vnode,va,vc,ns] = vfhcl_f12(x,y,ba,bc)

% get the sigma and pi potentials from interpolated ab initio data

% the spin-orbit data is calculated from a fit to ab initio data

[vsig,vpi,vso] = vfhcl_fast(x,y);

% OMEGA BASIS

D = [2/3, sqrt(2)/3, sqrt(2)/3, 1/3; % vsig

1/3, -sqrt(2)/3, -sqrt(2)/3, 2/3; % vpi

-1, 0, 0, 2]; % vso

vnode = [vsig vpi vso]*D;

ns = 2;

if nargout==4

va = vnode(ba,[1 4]);

vc = vnode(bc,[1 4]);

end

The first step of this routine is to interpolate the ab initio data of the Σ, Π and spin orbit potential
surfaces. The vfhcl fast.m subroutine also performs an asymptotic dampening of these potentials
under the hood in order to set VΣ = VΠ asymptotically and to set the the minimum of the potential
to HCl(re) at Ra = 24.

Once the potential in the Λ basis is loaded it is transformed to the ja basis everywhere in space. The
[vsig vpi vso] matrix has dimension np×np, where np is the number of points in the triangulation
(output from polymesh subsection 7.20). Multiplying this by the D matrix, which has dimension 3×4,
gives the vnode matrix of dimension nt×4. At each of the nodal points the potential is represented
by a 2D matrix and it is more convenient to store the points as follows

vnode(i, :) = [v11(i), v12(i), v21(i), v22(i)

where

V j(Ra(i), ra(i)) =

[
v11(i) v12(i)
v21(i) v22(i)

]
Finally the ns variable tells COLSCAT2D that two states will be used in this calculation and the
potential energy surfaces v11 and v22 are given along the reactant and product boundaries. These
asymptotic potentials are used to calculated the vibrational states on the boundaries. note: the
potential is set to zero within vfhcl fast and is therefore not zeroed again in this subroutine.
The following snippet of code shows how to use this two-state potential surface to perform the reactive
scattering calculations.
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clear all, close all, clc

% reactive scattering of F+HCl on klos PES

global m

me = 1822.88862599; % electron mass

m = [18.998, 1.008, 35.453]*me; % mass of [F,H,Cl] in amu

E = 0.0063:.0001:.06; % energy range hartree

% generate mesh

[p,t,pf,bnd] = meshgen(m,[24 24],[.6 7 1.2 7],[.1 1],0.15,'vfhcl_f12');

%% Call main Szcattering Routine

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,[0 0],[1 2],'vfhcl_f12',5);

%% initial state ja=3/2

% collision energy

econv = 27.211;

ecol32 = (E-viba{1}.e(1))*econv;

% reactive probabilities

figure(1)

hold on

plot(ecol32,R{1,1}(:,4),'color','b',ecol32,R{2,1}(:,4),'color','r','linewidth',1)

set(gca,'fontsize',18,'ytick',0:.1:.5,'xtick',0:.1:.55)

axis([.1 .55 0 .55]);

box on

text(.125,.45,'j_a=3/2','fontsize',21)

text(.415,.45,'reactive','fontsize',21)

text(.305,.07,'j_c''=3/2','fontsize',21,'color','b')

text(.325,.3,'j_c''=1/2','fontsize',21,'color','r')

xlabel('collision energy, eV','fontsize',21)

ylabel('probability','fontsize',21)

set(gcf,'position',[0 500 560 210])

% nonreactive probabilities

figure(2)

hold on

plot(ecol32,N{1,1}(:,1),'color','b','linewidth',ecol32,N{2,1}(:,1),'color','r','linewidth',1);

set(gca,'fontsize',18,'ytick',0:.2:.8,'xtick',0:.1:.55)

axis([.1 0.55 0 1]);

box on

text(.415,.8,'nonreactive','fontsize',21)

text(.445,.2,'j_a''=3/2','fontsize',21,'color','b')

text(.32,.45,'j_a''=1/2','fontsize',21,'color','r')

text(.125,.8,'j_a=3/2','fontsize',21)

xlabel('collision energy, eV','fontsize',21)

ylabel('probability','fontsize',21)

set(gcf,'position',[600 500 560 210])

%% initial state ja = 1/2

ecol12 = (E-viba{2}.e(1))*econv;

% reactive probabilities

figure(3)

hold on

plot(ecol12,R{1,2}(:,4),'color','b',ecol12,R{2,2}(:,4),'color','r','linewidth',1)
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set(gca,'fontsize',18,'ytick',0:.1:.5,'xtick',0:.1:.55)

axis([0.075 .55 0 .55]);

text(.125,.45,'j_a=1/2','fontsize',21)

text(.415,.45,'reactive','fontsize',21)

text(.42,.11,'j_c''=3/2','fontsize',21,'color','b')

text(.28,.305,'j_c''=1/2','fontsize',21,'color','r')

xlabel('collision energy, eV','fontsize',21)

ylabel('probability','fontsize',21)

set(gcf,'position',[0 150 560 210])

% nonreactive probabilities

figure(4)

hold on

plot(ecol12,N{1,2}(:,1),'color','b',ecol12,N{2,2}(:,1),'color','r','linewidth',1);

set(gca,'fontsize',18,'ytick',0:.2:.8,'xtick',0:.1:.55)

axis([0.075 0.55 0 1]);

text(.125,.8,'j_a=1/2','fontsize',21)

text(.415,.8,'nonreactive','fontsize',21)

text(.48,.325,'j_a''=3/2','fontsize',21,'color','b')

text(.29,.7,'j_a''=1/2','fontsize',21,'color','r')

xlabel('collision energy, eV','fontsize',21)

ylabel('probability','fontsize',21)

set(gcf,'position',[600 150 560 210])

This script simultaneous evaluates the reactive scattering of F(ja = 3/2) + HCl(va = 0) and F(ja =
1/2) + HCl(va = 0). The following figures are produced when this script runs. These four figures
illustrates how COLSCAT2D stores the results of multistate scattering, namely R{i,j}(:,k) is the
reactive scattering probability from the initial state corresponding to the A(ja = iSurf(i))+ BC(va =
iState(i)) → AB(vc

′ = k) + C(jc
′ = j).
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5.7 Tutorial G: F+H2 – Two State scattering with Mixed Boundary Conditions

The following script outlines a two-state calculation where the initial conditions are given in a different
basis than the actual calculation.

clear all, close all, clc

% reactive scattering of F+H2

global m

mh = 1836.15264; % mass of hydrogen in au

m = mh*[19/1.008 1 1]; % [F,H,H]

E = 0.0117; % energy range

% transformation of reactant Da and product Dc channels

Da =[sqrt(2)*1i 1; -1i sqrt(2)]/sqrt(3);

Dc = eye(2);

% calculate mesh

[p,t,pf,bnd] = meshgen(m,[10.5 10],[1 9 .5 9],[.15 .265],0.15,'vfh2_multi_nan');

% determine scattering probabilities and wave functions

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d_clebsch(m,E,p,t,pf,[ 0 0 ],[1 2],'vfh2_multi',4,Da,Dc);

%% calcualte the flux on the adiabatic surfaces

% mesh grid of interpolated range of interest

box = [3.2 10 .5 1.9];

h = 0.05;

[x,y] = meshgrid(box(1):h:box(2),box(3):h:box(4));

% interpolate wave function on both adiabats to mesh grid

Fpsi1 = scatteredInterpolant(pn(:,1),pn(:,2),psi{1,1});

Fpsi2 = scatteredInterpolant(pn(:,1),pn(:,2),psi{2,1});

psi1 = reshape(Fpsi1(x(:),y(:)),size(x));

psi2 = reshape(Fpsi2(x(:),y(:)),size(y));

% calculate adiabatic potentials at bond coordinates

pb = tobond([x(:) y(:)],m);

[vsig,vpi,vso] = vfh2_sigpi(pb(:,1),pb(:,2));

[a1,a2,theta] = adiabats(vsig,vpi,vso);

a1 = reshape(a1,size(x));

theta = reshape(theta,size(x));

vsig = reshape(vsig,size(x));

vpi = reshape(vpi,size(x));

vso = reshape(vso,size(x));

vdif = vsig-vpi;

[Jx1,Jy1,Jx2,Jy2] = meshflux(psi1,psi2,theta,m,h,h);

[Jxx,~] = gradient(Jx1,h,h);

[~,Jyy] = gradient(Jy1,h,h);

div = Jxx+Jyy;

figure(1)

hold on

contour(x,y,div,[-6:.3:-.3 .3:.3:6])

contour(x,y,a1,[E E],'r')

contour(x,y,vdif,[0 0],'k--')

contour(x,y,abs(vdif)-3*vso,[0 0],'k')

axis([3. 10 .7 1.7])
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axis off

text(6,1.6,'\nabla x J^{a1}','fontsize',21)

set(gcf,'position',[150 150 375 280])

Evaluating this script yields the following figure, which shows the divergence of the current density
on the lower adiabatic surface.

∇ x J
a1

Figure 6: The divergence of the current density on the lower adiabatic surface for the reaction F(ja =
3/2) + H2(va=0). The solid red line shows the classically forbidden region of space. The dashed black
line shows the seam where VΣ = VΠ. The solid black line shows the seam where Vdiff = 3VSO.

This script can easily be modified to determine the divergence of the flux from the upper adiabatic
surface by using the following two lines

% interpolate wave function on both adiabats to mesh grid

Fpsi1 = scatteredInterpolant(pn(:,1),pn(:,2),psi{1,2});

Fpsi2 = scatteredInterpolant(pn(:,1),pn(:,2),psi{2,2});

From the continuity theorem, however, one notes that the divergence of the current density on the
lower adiabatic surface is simply the opposite of the divergence of the current density on the upper
adiabatic surface.

5.8 Convergence

The numerical accuracy of COLSCAT2Dcan be tested by checking the conditions that all scattering
probabilities add up to unity for a given collision energy. This ensures that there is conservation of
probability. We can derive this from the following consideration, we expect the flux at the reactant
boundary (a channel) to be the opposite of the flux (c channel) at the product boundary, i.e.

Ja = −Jc

where

Jγ =
−ih̄
2µγ

{
ΨΓγ (n̂ · ∇)Ψ∗

Γγ
− [(n̂ · ∇)ψΓγ ]ψ

∗
Γγ
)
}
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where ΨΓγ is the projection of the wave function onto the γ channel boundary, (n̂ · ∇) is the directional
derivative normal to the boundary and µ is the reduced mass of the system in that channel, µγ from
Eq. 11 in [?]. From the boundary condition we know that analytic form of the wave function on each
boundary can be written as follows

ΨΓa =
exp [−ik0Ra]χ0(ra)√

va
+
∑
j

Sa
0j

exp [ikjRa]χ
a
j (ra)√

va

and

ΨΓc =
∑
j′

Sc
0j′

exp [ikj′Rc]χ
c
j′(rc)√

vc

Using the orthogonality of the χ functions we can use the fact that Ja = −Jc to derive

1 =
∑
j

|Sa
0j |2 +

∑
j′

|Sc
0j′ |2

Relating this derivation to the language of COLSCAT2D the S-matrix element |Sa
0j |2 is N1(i,j),

where i is corresponds to the ith value of the vector of total energy, E(i). Likewise the S-matrix
element |Sc

0j′ |2 is N1(i,j’). For a given single electronic surface calculation this can be tested in
using the following command

% test the convergence of the colscat calculation at each energy

S = sum(N{1},2)+sum(R{1},2)

The accuracy of a given calculation in COLSCAT2Dcan usually be improved by adjusting three
things: (1) increase the number of mesh points in the grid creation subroutine by decreasing the value
of dq, note: this is especially relevant at high collision energies, (2) increase the polynomial order of
the basis functions used in the FEM calculation until the calculation converges, or (3) try increasing
the size of the domain itself and the number of mesh points. To do this experiment with increasing
the parameters, ’Rmax’ and ’vcont’ in meshgen.m.

5.9 Output Structure

With the many options for multiple states and electronic surfaces it is important to comment on how
the output variables are organized.

5.9.1 Scattering Amplitudes

The non-reactive scattering amplitudes N and the reactive scattering amplitudes R are stored in what
MATLAB calls a ‘cell’. These two cell structures have dimension number of electronic states × the
number of initial conditions. For example, consider a calculation with two initial conditions (Tutorial
C in subsection 5.3), N and R have size 1× 2.

Stored inside of each of these cells is a matrix of dimension le × (nao+nco), where le is the length of
the E vector, i.e. the total number of input scattering energies, nao is the number of ‘open’ vibrational
states in the reactant channel and nco is the number of ‘open’ in the product channel. The following
portion of code shows how to calculate, simultaneously, the scattering amplitudes for a desired set of
initial and final vibrational states.
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% symmetric scattering example H+H2

mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh]; % [H,H,H]

E = 0.01:0.0001:0.06; % energy range

iState = 1:2; % initial vibrational state of reactants

%% calulate mesh for HH2 problem

[p,t,pf] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.3,'vhh2');

%% main scattering calculation using Polynomial order 4 basis functions, P4

[N,R,psi,viba,vibc,v,pn,tn,tln] = colscat2d(m,E,p,t,pf,iState,[1 1],'vhh2',4);

% collision energy in eV

ecol = (E-viba{1}.e(1))*27.211;

% the non-reactive probabilities H+H2(v=1) --> H+H2(v=0)

% N{1} refers to the non-reactive probabilities for initial state iState(1)

figure(1)

plot(ecol,N{1}(:,1));

title('H + H_2(v=1)\rightarrow H + H_2(v=0)','fontsize',24);

set(gca,'fontsize',20);

axis([ecol([1 end]) 0 1]);

set(gca,'xtick',0:.25:1.5);

xlabel('Collision Energy, eV');

% the reactive probabilities H+H2(v=2) --> H+H2(v=1)

% R{2} refers to the reactive probabilities for initial state iState(1)

figure(2)

plot(ecol,R{2}(:,2),'g');

title('H + H_2(v=2)\rightarrow H_2(v=1)+H','fontsize',24);

set(gca,'fontsize',20);

axis([ecol([1 end]) 0 1]);

set(gca,'xtick',0:.25:1.5);

xlabel('Collision Energy, eV');

5.10 Wave function and nodal points

The wave function output variable, psi, also has a cell type with dimension 1 × number of initial
conditions. However, each cell in the psi variable contains a matrix that has dimension np × le

where np is the number of nodal points in the mesh and le is the length of the E vector, i.e. the total
number of input scattering energies.

The coordinates of the nodal points in the triangulation are stored in the variable pn. The pn variable
is a matrix with dimension np×2 and contains the mass-scaled Jacobi coordinates of the nodal points.
Some subroutines ask for the full pn variable and other times you may be asked for the coordinates
individually. The first coordinate, Ra, can be addressed using the syntax pn(:,1) and similarly the
second coordinate, ra, is addressed via the call pn(:,2).

After running the following code produces plots of the probability density for various choices of initial
and final states.
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Figure 7: (left) Non-reactive (inelastic) H+H2(v=1) → H+H2(v=0) probabilities as a function of collision energy.
(right) Reactive H+H2(v=2) → H2(v=1)+H probabilities as a function of collision energy.

% the probability density for H+H2(v=1)

% psi{1}(:,100) refers to the wave function with initial state v = iState(1)

% with a total energy = E(400) = 0.0499 hartree = 1.3578 eV

figure(3)

tricontour(pn,tln,abs(psi{1}(:,250)).^2,20)

title('Probability Density E_{tot} = 0.950 eV','fontsize',24);

set(gca,'fontsize',20);

axis off;

axis off;

% the probability density for H+H2(v=2)

% psi{2}(:,213) refers to the wave function with initial state v = iState(2)

% with a total energy = E(400) = 0.0349 hartree = 0.950 eV

figure(4)

tricontour(pn,tln,abs(psi{2}(:,400)).^2,25)

title('Probability Density E_{tot} = 1.358 eV','fontsize',24);

set(gca,'fontsize',20);

axis off;

5.11 Two-state Output Structure

The scripts in subsection 5.6 (N and R) and subsection 5.7 (psi) give detailed examples of how to
reference the two state outputs generated by COLSCAT2D .

27



Probability Density E
tot

 = 0.950 eV Probability Density E
tot

 = 1.358 eV

Figure 8: Probability densities for (left panel) H+H2(v=1) at Etot = 1.3578 eV, and (right) H+H2(v=2) at Etot

= 1.5020 eV. We can see the nodes in the vibrational wave function, one node for v=1 in the left panel, and two nodes
for v=2 in the right panel near the reactants.

6 Parallelization and the Parallel Computing Toolbox

With access to MATLAB’s parallel computing toolbox (PCT) the user can easily parallelize any
COLSCAT2Dcalculation. The PCT distributes the calls to the solver subroutine at each value of
the total energy. To invoke parallelized code, you need only replace the ‘for’ loop on line 33 with a
‘parfor’. MATLAB transparently oversees the distribution of the calculation.

Serial for loop (all versions)

%% Scattering probability as a function of energy

np = length(pn); le = length(E); U = cell(le,1);

for jj = 1:le

U{jj} = solver2d(E(jj),T,V,O,M,viba,vibc,iState,iSurf,ba,bc,np,ns,Ra,Rc);

end

Parallel for loop (MATLAB2013 and after)

%% Scattering probability as a function of energy

np = length(pn); le = length(E); U = cell(le,1);

parfor jj = 1:le

U{jj} = solver2d(E(jj),T,V,O,M,viba,vibc,iState,iSurf,ba,bc,np,ns,Ra,Rc);

end

Parallel for loop (before MATLAB2013)
If you have the parallel computing toolbox on a older version of MATLAB you must open the pool of
cores before you begin the calculation and close them after the calculation. The pool is opened with
the command matlabpool(cores) where cores is the number of cores in the pool. Closing the pool
is done with matlabpool close. This should be done outside the call to COLSCAT2D .
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7 Function Reference

7.1 adiabats.m

Inputs Description Dimension

vsig ground state in Λ basis np× 1
vpi first excited state in Λ basis np× 1
vso spin-orbit constant np× 1

Outputs

a1 ground state surface in adiabatic basis np× 1
a2 first excited state surface in adiabatic basis np× 1
theta mixing angle that describes the rotation from diabetic to

adiabatic bases
np× 1

This subroutine takes the potential energy surfaces in the Λ basis and returns the adiabatic potentials
and the mixing angle. This subroutine assumes the 2-state potential energy system of the form

V Λ(u1, u2) =

[
VΣ(u1, u2) −

√
2B(u1, u2)

−
√
2B(u1, u2) VΠ(u1, u2) +B(u1, u2)

]
where (u1, u2) are the bond coordinates for the given system, B(u1, u2) is the spin orbit constant, vso.
theta is the mixing angle that diagonalizes V Λ at each point in space and is defined as follows

tan θ =
2c

a− b

where a = VΣ, b = VΠ + B and c = −
√
2B. The mixing angle can then be used to determine the

current density in the adiabatic bases as in Section 7.15.

7.2 boundaryind.m

This routine takes the mesh as its only input and determines which points lie on the reactant and
product boundaries. These indices are ultimately used to construct the sparse matrices that extend
the FEM matrices in the subroutine extendmat2d.m (subsection 7.5).

Inputs Description Dimension

pn nodal points coordinate matrix (subsection 7.20) np× 2
pf fixed points that define reactant and product mesh (subsec-

tion 7.16)
4 ×2

Parameters

tol distance tolerance for deciding if a point is on the boundary

Outputs

ba index of nodes along reactant boundary (a-channel) sorted
in increasing values of ra.

1× na

bc index of nodes along product boundary (c-channel) sorted
in increasing values of rc.

1× nc

pn nodal points coordinate matrix (with shifted boundary
points)

np× 2
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% generate a small mesh using the h+h2 mesh generator

mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh]; % H + H2

% generate mesh

[p,t,pf,bnd] = meshgen(m,[6 6],[.25 9 .25 9],[.1 .6],0.4,'vhh2');

% generate a quadratic mesh

[pn,tn,tln] = polymesh(p,t,2);

% determine the points along the boundary

[ba,bc,pn] = boundary(pn,pf);

% plot the mesh and highlight the boundary points

hold on;

patch('vertices',pn,'faces',tln,'edgecol','k','facecol',[.8,.9,1]);

plot(pn(ba,1),pn(ba,2),'ko','markersize',8);

plot(pn(bc,1),pn(bc,2),'ro','markersize',8);

axis off

Figure 9: Given the mesh output from application of the meshgen routine, the boundaryind.m subroutine identifies
which nodal points lie on the reactant boundary (ba indices shown in black) and which points on the product boundary
(bc indices shown in red).
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7.3 colscat2d.m

See the tutorials in section 5 for how to create inputs for and execute the main COLSCAT2Dprogram.
The scattering output variables N, R and psi are discussed above in subsection 5.9.
Inputs Description Dimension

m mass vector in atomic units [mA, mB, mC ] 1 × 3
E total energy vector in hartree 1 × le
p points in the triangulation (subsection 7.16) varies
t connectivity matrix of triangulation (subsection 7.16) varies
pf fixed points on mesh define boundaries (subsection 7.16) 2 × 4
iState initial vibrational state of BC scalar
iSurf initial electronic surface of A scalar
vinput function reference (subsection 7.28) function handle
n polynomial order of FEM calculation (1-5) scalar

Outputs

N non-reactive probabilities cell: nSurf × nStates
R reactive probabilities cell: nSurf × nStates
psi wave function cell: nSurf × nStates
viba reactant boudnary vibrational structure (subsection 7.27)
vibc product boudnary vibrational structure (subsection 7.27)
v potential energy surface evaluated at nodal points np × 1
pn nodal points on mesh designed for polynomial order n (sub-

section 7.16)
2×np

tn connectivity matrix of pn (subsection 7.16) varies with n
tln linearized connectivity matrix of pn (subsection 7.16) varies with n
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7.4 colscat2d clebsch.m

See the tutorials in section 5 for how to create inputs for and execute the main COLSCAT2Dprogram.
The scattering output variables N, R and psi are discussed above in subsection 5.9.
Inputs Description Dimension

m mass vector in atomic units [mA, mB, mC ] 1 × 3
E total energy vector in hartree 1 × le
p points in the triangulation (subsection 7.16) varies
t connectivity matrix of triangulation (subsection 7.16) varies
pf fixed points on mesh define boundaries (subsection 7.16) 2 × 4
iState initial vibrational state of BC scalar
iSurf initial electronic surface of A scalar
vinput function reference (subsection 7.28) function handle
n polynomial order of FEM calculation (1-5) scalar
Da clebsch gordon matrix if reactant channel is different basis

than potential basis
2× 2

Dc clebsch gordon matrix if product channel is different basis
than potential basis

2× 2

Outputs

N non-reactive probabilities cell: nSurf × nStates
R reactive probabilities cell: nSurf × nStates
psi wave function cell: nSurf × nStates
viba reactant boudnary vibrational structure (subsection 7.27)
vibc product boudnary vibrational structure (subsection 7.27)
v potential energy surface evaluated at nodal points np × 1
pn nodal points on mesh designed for polynomial order n (sub-

section 7.16)
2×np

tn connectivity matrix of pn (subsection 7.16) varies with n
tln linearized connectivity matrix of pn (subsection 7.16) varies with n

The colscat2d clebsch.m is very similar to the original colscat2d.m subroutine but allows for either
the reactant or product channel to be in a different basis than the solution basis. This assumes that the
transformed reactant/product basis can be described as a linear combination of the potential states
(such as the Clebsch-Gordon transformation from coupled to uncoupled angular momentum states).
The Da and Dc matrices give the transformation in the reactant and product channels, respectively.
If both of these matrices are set to unity than the original COLSCAT2D functionality is obtained.
The solution to the coupled matrix problem with natural (untransformed boundary conditions) can
be written as 

A11 A12 −B1
a −B1

c 0 0
A12 A22 0 0 −B2

a −B2
c

I1a 0 −F1
a 0 0 0

I1c 0 0 −F1
c 0 0

0 I2a 0 0 −F2
a 0

0 I2c 0 0 0 −F2
c





C1

C2

S1
a

S1
c

S2
a

S2
c

 =



b1

0
f1

0
0
0


The above relationship is ideal for describing systems with multiple states where the potential in both
the reactant and product arrangements is diagonal. The potential must be asymptotically diagonal
because the non-zero offdiagonal terms will create coupling far away from the rearrangement region.
Ultimately this creates sensitivity in the results to the location of the boundaries. Small changes in
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the asymptotic values of Ra or Rc which is not physically reasonable.

In cases where the coupled potential surface is not diagonal asymptotically we can use the Da or Dc
matrix to get the desired form of the potential. In the case of F+H2 the reactant arrangement is
diagonal in the ja basis but the product arrangement is diagonal in the Λ basis. The following matrix
problem shows how colscat2d clebsch.m implements this change of basis for the F+H2 system.
(note the rearrangement of the scattering probabilities in the vector of unknowns)

A11 A11 −D11B
3/2
a −D21B

1/2
a −BΣ

c 0

A12 A12 −D12B
3/2
a −D22B

1/2
a 0 −BΠ

c

IΣa 0 −D11F
3/2
a −D21F

1/2
a 0 0

0 IΠa −D12F
3/2
a −D22F

1/2
a 0 0

IΣc 0 0 0 −FΣ
c 0

0 IΠc 0 0 0 −FΠ
c





CΣ

CΠ

S
3/2
a

S
1/2
a

SΣ
c

SΠ
c


=



D11b
3/2

D12b
3/2

D11f
3/2

D12f
3/2

0
0


The transformation from the Λ basis to the ja basis for the F+H2 can be written as follows

|j⟩ = D |Λ⟩

where

D =
1√
3

[
i
√
2 1

−i
√
2

]
We would like to write the boundary condition on the reactant side as an incoming part on the ja = 3/2
state and outgoing part on both the ja = 3/2 and ja = 1/2 states. In the ja basis this looks like

ΨΓa = incoming |3/2⟩+ outgoing |3/2⟩+ outgoing |1/2⟩

We can then use the above transformation to write this in terms of the electronic states actually used
in the calculation namely the Λ states.

ΨΓa = incoming(D11 |Σ⟩+D12 |Π⟩) + outgoing(D11 |Σ⟩+D12 |Π⟩) + outgoing(D21 |Σ⟩+D22 |Π⟩)

The coloring of the transformed and untransformed matrix equations shows how this change of basis
in the boundary conditions is implemented. When colscat clebsch.m builds the extended matrices
it simply scales B, F and b using the matrix elements of D and makes a slightly less sparse matrix
problem. It is clear that if D is unity the original implementation is recovered.

IMPORTANT - Notice that the incoming matrices Bj
a are in a different basis than the outgoing

ones BΛ
c . This requires that the supplied boundary potential (subsection 7.28) gives the potential in

the correct basis on each boundary. (In the case of F+H2 the va output of vinput should be in the ja
basis to build the colored Ba, Fa and ba matrices and the output vc should be in the Λ basis to build
the Bc, Fc and bc matrices. See (subsection 5.7) for an example of how to implement these mixed
boundary conditions.
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7.5 extendmat2d.m

The extendmat2d.m is used to extend the system from a simple bound state calculation to include
the scattering boundary conditions.
Inputs Description Dimension

viba reactant boudnary vibrational structure (subsection 7.27)
vibc product boudnary vibrational structure (subsection 7.27)
ba indices on a-channel boundary (reactants) 1×na
bc indices on c-channel boundary (products) 1×nc
M mass structure (subsection 7.12)
E total energy of scattering calculation scalar
np number of nodal points in mesh scalar
ns number of electronic surfaces in calculation scalar
Ra Asymptotic limit of mass-scaled jacobi vector R in reactant

channel
scalar

Rc Asymptotic limit of mass-scaled jacobi vector R in product
channel

scalar

Outputs

B extended boundary integral FEM matrix np*ns×(na+nc)*ns
F extended boundary condition FEM matrix (na+nc)*ns×(na+nc)*ns
I extended unity-like FEM matrix (na+nc)*ns×np*ns

where na is the number of nodal points on the reactant boundary, nc is the number of points on the
product boundary and ns is the number of electronic surfaces involved in the calculation, respectively.

7.6 extendmat2d clebsch.m

Builds the extended right hand side of the linear system of equations using the input transformation
matrices Da and Dc. The transformed matrix equation is shown in subsection 7.4.
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7.7 extendrhs2d.m

The extendrhs2d.m subroutine is used to build the right hand side of the extended FEM problem.
One column of the right hand side is built for each initial condition. The initial conditions are identi-
fied by the initial vibrational state (iState) and the initial electronic surface (iSurf). nstate is the
number of initial states, i.e. the length of the iState vector.

Inputs Description Dimension

viba reactant boudnary vibrational structure (subsection 7.27)
ba indices on a-channel boundary (reactants) 1× na
bc indices on c-channel boundary (products) 1× nc
iState initial vibrational state of BC 1 × nstate
iSurf initial atomic electronic state of A 1 × nstate
M mass structure (subsection 7.12)
E total energy of scattering calculation scalar
np number of nodal points in mesh scalar
ns number of electronic surfaces in calculation scalar

Outputs

b boundary integral and boundary condition of initial state (np+na+nc)*ns ×
nstate

7.8 extendrhs2d clebsch.m

Builds the right hand side of the linear system of equations using the input transformation matrix Da.
The transformed matrix equation is shown in subsection 7.4.

7.9 fem2d.m

This script builds the FEM matrices using only the nodal coordinates and the value of the potential
energy surface evaluated at each node. The simplicity of the code is somewhat obscured by the vector-
ized construction of the matrices. This script will build the FEM matrices for any polynomial order
PN. Note: increased polynomial order has improved accuracy but decreased speed because these FEM
matrices are less sparse due to increased size of the connectivity matrices (subsection 7.20). Below the
basics of fem2d.m for a P2 are provided but these results are easily generalized to any polynomial order.

Inputs Description Dimension

pn nodal points in quadratic mesh np × 2
tn quadratic mesh nt × 6
v potential energy surface at each node np × 1
n polynomial order of the FEM basis functions scalar

Outputs

T kinetic energy PN FEM matrix (np*ns) × (np*ns)
V potential energy PN FEM matrix (np*ns) × (np*ns)
O kinetic energy PN FEM matrix (np*ns) × (np*ns)

In Figure 7.9 we provide a sample triangulation with 6 triangles and 19 nodes; 7 vertex nodes shown
in black and 12 midpoint nodes shown in red. The following table uses the notation of the published
paper [?] to describe the FEM basis functions for the first seven nodes in this quadratic triangulation.
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Figure 10: A sample P2 mesh and numbering scheme. The nodes of the linear mesh are labeled 1–7 in black. In the
quadratic mesh additional nodes are added at the midpoints, labeled 8–19 in red. Finally the triangles are numbered
1–6 in blue.

node basis functions

1 Φ1 = ϕ11 + ϕ12 + ϕ13 + ϕ14 + ϕ15 + ϕ16
2 Φ2 = ϕ21 + ϕ25
3 Φ3 = ϕ31 + ϕ34
4 Φ4 = ϕ43 + ϕ44
5 Φ5 = ϕ52 + ϕ53
6 Φ6 = ϕ62 + ϕ66
7 Φ7 = ϕ75 + ϕ76
8 Φ8 = ϕ81 + ϕ85
9 Φ9 = ϕ91 + ϕ94
10 Φ10 = ϕ10,3 + ϕ10,4
11 Φ11 = ϕ11,2 + ϕ11,3
12 Φ12 = ϕ12,2 + ϕ12,6
13 Φ13 = ϕ13,5 + ϕ13,6
14 Φ14 = ϕ14,1
15 Φ15 = ϕ15,5
16 Φ16 = ϕ16,4
17 Φ17 = ϕ17,3
18 Φ18 = ϕ18,2
19 Φ19 = ϕ19,6

Table 1: Basis functions of a sample quadratic triangulation.

where ϕij is only defined over triangle j, is unity at node i and is zero at every other node associated
with triangle j. To compute the integrals in Eq. (31) of the published paper [?] one could, in principle,
loop over every node and compute the nonzero integrals.

Oij =

∫
Ω
ΦiΦj dRdr (1)

For example, one could directly substitute the basis functions from Table 7.9 into the first term in Eq.
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(31) of the published paper [?]. Using the expansion in terms of the bivariate ϕ functions, we have

Oij =
∑
k,l

∫
Ω
δklϕikϕjl dRdr (2)

where we sum (k) over all triangles associated with node i and (l) over all triangles associated with
node j. The δkl term reminds us that these basis functions are locally defined, and hence these inte-
grals are non-zero unless k and l refer to the same triangle.

We make this notion more concrete by picking two nodes, say node 1 and node 7, from Figure 7.9.
The matrix element for the O matrix between these two nodes would then be

O17 =

∫
Ω
Φ1Φ7 dRdr

=

∫
Ω
(ϕ11 + ϕ12 + ϕ13 + ϕ14 + ϕ15 + ϕ16)(ϕ75 + ϕ76) dRdr

=

∫
Ω
ϕ15ϕ75 dRdr +

∫
Ω
ϕ16ϕ76 dRdr

(3)

Calculating the integrals in this fashion would require an explicit loop over all nodal points, and an
inner loop over all possible overlapping nodes. To avoid looping over nodal indices and make use of
MATLAB’s vectorization capabilities. We map each triangle to the standard triangle, which is defined
by the points (0,0), (0,0.5), (0,1), (0.5,0.5), (1,0), and (0.5,0). Six basis functions are associated with
the standard triangle. Each basis function is unity at a given node and zero at the other five nodes.
These are describe in detail in Section III D of the associated publication [?].

We want to evaluate the integrals shown in Eqs. (35–37) in the referenced paper. The T and O
matrix elements require the evaluation of integrals containing 2 basis functions, hence there are 36
possible combinations for a given triangle with 6 basis functions. Similarly, the V matrix elements
involve 3 basis functions and hence have 216 possible combinations for a triangle with 6 associated
basis functions, note: 15 of these values are redundant by symmetry. These possible combinations
include symmetric values, i.e.

∫
Ω ϕikϕjk =

∫
Ω ϕjkϕik.

All 36 elements of the T and O matrices, and all 216 elements of the V matrix are determined in two
steps. First the so-called ‘constructor’ matrices are formed by calculating the coefficients of the basis
functions for the standard triangle and then using an analytic expression to evaluate the Oij , Tij and
Vijk matrix elements for the standard triangle basis functions. Along with the nodal coordinates, the
potential energy surface at the nodal points and these ‘constructor’ matrices the full FEM matrices
can be built using a single matrix multiplication.

The script stdint2d.m determines the values of the ‘constructor’ matrices as follows. Any one of the
three desired matrix elements can be written in general as follows

Xij =

a+b≤P∑
a,b

cab

∫ 1

0

∫ 1−y

0
xayb dxdy

The double integral has the following analytic solution
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∫ 1

0

∫ 1−y

0
xayb dxdy =

a!b!

(a+ b+ 2)!
= X̃ab

which can easily be vectorized in MATLAB. Finally we can write the coefficients, the c′abs in matrix
form and get a matrix expression for this integral, namely,

X = CT X̃C

Different choices of C and X̃ yield different constructor matrices. These constructor matrices are
created anew for each calculation. They could be calculated a single time and then stored and loaded
from memory, however, given they depend only analytic expressions for a given value of polynomial
order N, they can be vectorized and hence their determination is on the orders of hundredths of sec-
ond. These constructor matrices are then passed to the fem2d.m script to build the full FEM matrices.
Section 7.23 contains more detail on how these integrals are computed.

With the ‘constructor’ matrices in hand, i.e. t1, v1 and o1, the variables Xscalar and Yscalar

are used to build the final FEM matrices. These two variables identify all 36 combinations of nodal
points (in the case of P2) for every single triangle. These two variables are the core of the vectorized
construction of the FEM matrices.

For example, the 5th row of the tn variable for the triangulation shown in Fig. 7.9 is

tn(5,;) = [2 1 7 8 13 15].

The Xscalar and Yscalar variables identify all 36 pairs of these 6 indices, that is

Xscalar(5,:)=[2 1 7 8 13 15 2 1 7 8 13 15 2 1 7 8 13 15... 2 1 7 8 13 15]

and

Yscalar(5,:)=[2 2 2 2 2 2 1 1 1 1 1 1 7 7 7 7 7 7... 15 15 15 15 15 15].

The O matrix for example, is then constructed using the following call

% overlap matrix: int \phi_i \phi_j

omat=sparse(Xscalar,Yscalar,bsxfun(@times,o1,2*areas));

where the o1 variable has dimension 1 × 36 and contains the standard triangle overlap integrals and
the variable areas is dimension 6× 1 containing the areas of each triangle in the triangulation. The
bsxfun creates a matrix with dimension 6 × 36 where each the ith row is o1*(2*areas(i)). Multi-
plying by two times the area of the ith triangle is identical to the prefactor of the determinant det[M]
in Eq. 35 [?].

From the fifth triangle, there would be a single contribution to the matrix element omat(1,7) which
would correspond to

∫
Ω∇ϕ15 ·∇ϕ75 dRdr. Similarly, from the sixth row of Xscalar, Yscalar a similar

element would be added to omat(1,7) corresponding to
∫
Ω∇ϕ16 · ∇ϕ76 dRdr, which gives us O17 in

Eqn. (3). The evaluation of the T and V matrices are slightly more complicated by the presence of
the ∇ operators in the case of the kinetic energy matrix elements and the presence of a third basis
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function in the potential energy matrix integrals. These are covered in more detail in the description
of stdint2d.m in Section 7.23.

Ultimately, because all of the matrix elements needed for these FE matrices can be calculated in terms
of the standard triangle basis functions and are known ahead of time and because we can refer to all
matrix elements simultaneously (termed vectorization in MATLAB jargon) we can build the entire
O, T and V matrices in a single line for each matrix. Furthermore, because this is similar to looping
over the triangles there is no fear of double counting integrals.

7.10 flux.m

One of the outputs of the main COLSCAT2D routine is the scattering wave function, Ψ. The prob-
ability density current field (the probability flux vector field), J, allows us to visualize the quantum
hydrodynamic behavior of the chemical reaction. This probability density current field is,

J(q) =
−ih̄
2µa

{Ψ(q)∇Ψ∗(q)− [∇ψ(q)]ψ∗(q)}

where µa is the reduced mass in the reactant arrangement (subsection 7.12). An example of visualizing
the probability density current field of the scattering wave function is shown in subsection 5.5.

Inputs Description Dimension

p matrix of mass-scaled Jacobi coordinates np × 2
t triangulation (connectivity matrix) of p nt × 3
psi scattering wave function np × le
m mass vector [Ma, Mb, Mc] 1 × 3

Outputs

Jx flux in the x-direction np × 1
Jy flux in the y-direction np × 1

7.11 jacobi.m

Mass-scaled Jacobi coordinates are used for most of the calculations in the COLSCAT2Dpackage.
However, the boundary functions and their integrals are more naturally written in terms of the un-
scaled Jacobi coordinates. jacobi.m is used to convert from the mass scaled to unscaled Jacobi
coordinates along the product and reactant boundaries.

Inputs Description Dimension

pn matrix of mass-scaled Jacobi coordinates np × 2
ba indices on a-channel boundary (reactants) 1× na
bc indices on c-channel boundary (products) 1× nc
M mass structure (subsection 7.12)

Outputs

ra unscaled Jacobi reactant coordinate (diatomic separation) na × 1
rc unscaled Jacobi product coordinate (diatomic separation) nc × 1
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7.12 mass.m

The mass.m script calculates many scaling parameters used frequently in the scattering calculation.
These are stored conveniently in the output structure.

Inputs Description Dimension

m mass vector [Ma, Mb, Mc] 1 × 3

Outputs

mass mass parameter structure
mass.Ma mass of atom A in atomic units scalar
mass.Mb mass of atom B in atomic units scalar
mass.Mc mass of atom C in atomic units scalar
mass.M sum of atomic masses scalar
mass.alpha skew angle from bond coordinates to mass-scaled Jacobi co-

ordinates
scalar

mass.mu reduced mass of the system scalar
mass.muab A-B diatomic reduced mass scalar
mass.mubc B-C diatomic reduced mass scalar
mass.mua reduced mass of reactant arrangement (A+BC) scalar
mass.muc reduced mass of product arrangement (AB+C) scalar
mass.lama reactant conversion factor (bond coordinates to reactant

mass-scaled Jacobi coordinates)
scalar

mass.lamc product conversion factor (bond coordinates to product
mass-scaled Jacobi coordinates)

scalar
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7.13 mepath.m

We include in COLSCAT2Dour implementation of the bead on a string method of Weinan et al. [?]
to determine the minimum energy path. Below is an example of how to call the mepath.m subroutine.
Inputs Description Dimension

x internuclear separation coordinate (must be a meshgrid) nrow × ncol
y internuclear separation coordinate (must be a meshgrid) nrow × ncol
v potential energy surface at each point in the x,y meshgrid nrow × ncol

Parameters

dt time step of steepest descent algorithm scalar
tol error tolerance (measured as the change in the numerical

integral of vbar)
scalar

maxit maximum number of iterations in main loop scalar
n number of beads on the string scalar
freq how many loop steps in between plotting events scalar
plot opt 1 to visualize beads or 0 for no plotting boolean
vcont initial potential contour for the beads scalar
exitmsg 1 to display how the subroutine exited, 0 to suppress any

message on exiting
boolean

Outputs

phi coordinates of reaction path n × 2
vphi potential energy along reaction path n × 1
rbar approximate location of barrier 1 × 2
vbar approximate value of potential energy at barrier scalar

% generate meshgrid potential

r = 0.25:0.05:8.9;

[x,y]=meshgrid(r,r);

v=vhh2(x(:),y(:)); %here we are calling the H+H2 PES. You can change this as you wish

v = reshape(v,size(x));

% calculate the minimum energy path

[phi,vphi,rbar0,vbar0] = mepath(x,y,v);

% superimpose the minimum energy reaction path on a contour plot of the PES

figure(1);

hold on;

contour(x,y,v,0.01:.05:0.5);

plot(phi(:,1),phi(:,2),'ko');

set(gca,'xtick',0:2:8);

set(gca,'ytick',0:2:8);

set(gca,'fontsize',20);

xlabel('r_{H1H2}','fontsize',24);

ylabel('r_{H2H3}','fontsize',24);

% plot the potential energy along the minimum energy reaction path

figure(2);

plot(vphi*1000);

set(gca,'fontsize',20);

xlabel('reaction coordinate','fontsize',24);

ylabel('potential energy, mHartree','fontsize',24);
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set(gca,'xtick',[]);

axis([0 200 -5 20]);
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Figure 11: Output of the mepath.m script (subsection 7.13). (Left) The minimum energy path superimposed on a
contour plot of the H+H2 PES of Mieklke and co-workers. [?] (Right) The potential along the minimum energy reaction
path.

7.14 mepbarrier.m

The mepbarrier.m script is almost indentical to mepath.m but modified to search only around the
barrier location. The sample code below illustrates how to use mepbarrier.m to improve the auto-
mated estimation of the barrier location for the H+H2 system.

42



Inputs Description Dimension

rbar0 estimate of barrier location (bond coordinates) 2 × 1
theta tangent direction of reaction path at barrier (estimate in

degrees)
scalar

dr box size around transition state estimate scalar
vinput potential energy surface function handle (subsection 7.28)

Parameters

nsearch number of beads along string in each search direction
dt time step of steepest descent algorithm scalar
tol error tolerance (measured as the change in the numerical

integral of vbar)
scalar

maxit maximum number of iterations in main loop scalar
n number of beads on the string scalar
freq how many loop steps in between plotting events scalar
plot opt 1 to visualize beads or 0 for no plotting boolean
exitmsg 1 to display how the subroutine exited, 0 to suppress any

message on exiting
boolean

Outputs

rbar approximate location of barrier 1 × 2
vbar approximate value of potential energy at barrier scalar

% generate meshgrid potential

r = 0.25:0.025:8.9;

[x,y]=meshgrid(r,r);

v=reshape(vhh2(x(:),y(:)),size(x));

% mass for h+h2

mh = 1836.15264; % mass of hydrogen in au

m = [mh,mh,mh];

% rbar0 is the initial guess (output from mep.m)

rbar0 = [1.7596, 1.7582];

% calculate a better approximation to the barrier

[rbar,vbar] = mepbarrier(rbar0,45,.05,'vhh2');

% calculate the TS frequency, w, and the TS direction, theta

[w,theta] = normalmodes(m,rbar,.01,'vhh2');

% plot correction to the barrier location w TS direction

figure(1);

hold on;

axis([1.69 1.81 1.69 1.81]);

contour(x,y,v,.0155:.00001:.016);

plot(rbar0(1),rbar0(2),'bo');

plot(rbar(1),rbar(2),'ro');

arrow(rbar',rbar'+theta(1:2,2)/8,10);

arrow(rbar',rbar'+theta(1:2,4)/8,10);

set(gca,'xtick',1.7:.025:1.81);

set(gca,'ytick',1.7:.025:1.81);

set(gca,'fontsize',20);
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Figure 12: The blue dot marks the initial estimation of the transition state for Mielke’s H+H2 PES from the output of
mepath.m. This initial estimate of the transition state is then recursively improved using another implementation of the
minimum energy path algorithm. The second estimation of the transition state is shown with the red dot. This improved
barrier location is then used as the input for normalmodes.m to determine the direction and vibrational frequency of the
transition state. The direction of the two normal mode vibrations at the barrier are shown with the two arrows.

7.15 meshflux.m

Inputs Description Dimension

psi1 wave function on lower diabatic surface (assumes meshgrid) np× 1
psi2 wave function on uppter diabatic surface (assumes meshgrid) np× 1
theta mixing angle that describes the rotation from diabetic to

adiabatic bases (assumes meshgrid)
np× 1

m mass vector [Ma, Mb, Mc] 1 × 3
hx grid spacing in x-direction scalar
hy grid spacing in y-direction scalar

Outputs

Jx1 current density on lower adiabatic surface in x direction (Ra

direction)
np× 1

Jy1 current density on lower adiabatic surface in y direction (ra
direction)

np× 1

Jx2 current density on first excited adiabatic surface in x direc-
tion (Ra direction)

np× 1

Jy2 current density on first excited adiabatic surface in y direc-
tion (ra direction)

np× 1

This subroutine assumes you have interpolated the wave function in a diabatic basis for a two-state
system to a mesh grid with uniform spacing hx (hy) in the x-direction (y-direction). Using gradient
and the expression for the adiabatic current density from the second paper in this series[?] this sub-
routine returns the current density in the two state system on the adiabatic surfaces. See Section 5.6
for an example on calling this subroutine using the outputs of COLSCAT2D .
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7.16 meshgen.m

The meshgen.m script is one of the more complicated function in the COLSCAT2D suite. This script
prepares input for use in the distmesh2d.m script written by Persson and Strang. [?] The mesh gen-
eration in COLSCAT2D is defined by the potential energy surface used for a given system.

To use Persson and Strang’s distmesh we must define a signed distance function, which given all
the points in the mesh returns the signed distance to the boundary of the mesh. While there are
many possible ways to define the boundary for the collinear problem, in this mesh generation routine,
we have chased to fit the inner and outer potential contours to hyperbolas (a bizarrely accurate fit
for a wide range of potential functions). Once these hyperbolas have been defined we make use of
distmesh’s implicit distance function capability and the values defined in Rmax to calculate the dis-
tance between every nodal point and the nearest point on the complicated boundary. This is done
in the function dmesh.m, however this subroutine is not discussed here and the authors recommend
Persson and Strang’s documentation for how to write signed distance functions for novel boundary
definitions. [?]

Inputs Description Dimension

m mass vector [Ma, Mb, Mc] 1 × 3
Rmax [Ra max Rc max] cut off values in the reactant and product

channels in mass-weighted jacobi coordinates
1 × 2

ubox bounding box for the potential (in bond coordinates) [u1min
u1max u2min u2max]

1 × 4

vcont [vin vout] value of PES along inner and outer boundary
(hartrees)

1 × 2

dq approximate size of triangle in mass-scaled jacobi coordi-
nates

scalar

vinput potential energy surface function handle string

Outputs

p matrix of all points in mesh varies × 2
t connectivity matrix of points in mesh varies × 3
pf fixed points of mesh (distmesh2d parameter) 4 × 2
bnd points approximating the boundary to the mesh varies × 2

To generate a new mesh the user must specify the following parameters, m, Rmax, ubox, vcont, dq
and vinput. The mass vector, m, is simply the mass vector in atomic units. The Rmax variable sets
the cut-off distance in the reactant and product channels, this value must be provided in terms of the
mass-scaled jacobi coordinates, Ra and Rc, for the reactant and product cut-offs, respectively. The
ubox parameter defines the box, in bond coordinates, used to generate the potential. When converted
to mass-scaled jacobi coordinates, ubox must be large enough to contain the values of Ra and Rc.
The parameter vcont is used to specify the other two cut-off values distances for the mesh, namely
meshgen,m uses contour lines of the potential to define the inner and outer boundaries. The dq pa-
rameter is used by distmesh2d.m as the approximate size of triangles in the mesh. Lastly, the user
must specify the potential energy surface function handle, vinput.

Here follows an outline of how to use the meshgen.m code to generate meshes suitable forCOLSCAT2D .
We will use the H+H2 system as an example.
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Figure 13: Mesh boundary for H+H2 using the potential energy surface of Mielke et al. [?]. The red and blue curves
correspond, respectively, to the outer and inner boundaries. These correspond to equipotential contours of 0.1 and 0.6
hartrees, respectively, hence vcont = [0.1 0.6]. The green and magenta lines correspond to Rmax(1) = 6 and Rmax(2)

= 6, respectively. The two panels are plots in internuclear separation (bond) coordinates (left) and mass-scaled Jacobi
coordinates (right). The input parameters vcont and Rmax are shown with the output parameter pf from the meshgen.m
subroutine.

Once good choices for Rmax and vcont have been made we need to choose values for ubox and dq.
The values used for ubox are chosen based on the fact that the vhh2.m potential energy function used
here is an interpolative routine and the values of ubox are chose to reflect the domain and range of
the available ab initio points. We can start with a relatively large value of dq = 0.3. Below we show
the MATLAB command to generate a mesh with this set of parameters and how to visualize the mesh
using MATLAB’s trimesh.m routine.

%% calulate mesh for HH2 problem

[p,t,pf,bnd] = meshgen(m,[6 6],[0.25 9 0.25 9],[0.1 0.6],0.3,'vhh2');

% plot the triangulation

hold on

trimesh(t,p(:,1),p(:,2),'color','k')

plot(bnd(:,1),bnd(:,2),'r')

axis off
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Figure 14: A sample mesh for the H+H2 system. The red line shows the boundary used by distmesh

to generate the mesh via the signed distance function mesh.m.

The outputs of meshgen.m are used directly as inputs for colscat2d.m. The user specifies the polyno-
mial order of the basis functions used in the FEM calculation and colscat2d.m adds more points to
the triangulation of p and t and described in subsection 7.20, (3 additional points for P2, 7 additional
points for P3, 12 additional points for P4 and 18 additional points for P5).

7.17 normalmodes.m

Inputs Description Dimension

m mass vector [Ma, Mb, Mc] 1 × 3
rbar barrier location (bond coordinates) 2 × 1
h step size for numerical derivative scalar
vinput potential energy surface function handle (subsection 7.28)

Outputs

w normal mode frequency scalar
theta direction of transition state vibrations 2 × 4

Given an approximate location of the barrier this script calculates the vibrational frequency and
direction of vibration of the normal mode vibrations of the transition state for a given system. This
script uses the potential energy input function handle to determine the potential energy surface on a
small grid in the neighborhood of the barrier. This grid is then used to determine the hessian of the
potential energy surface at the barrier. The hessian is then transformed to the normal coordinates
and becomes a diagonal matrix with two spring force constants. The positive valued spring force
constant can be used to determine the vibrational frequency of the normal mode vibration at the
transition state. This script also returns the directions of the normal mode vibration. The example in
subsection 7.14 illustrates how to call normalmodes.m and how to plot the transition state direction.

7.18 nrsort2d.m

The output of solver2d.m is a cell structure that is indexed by the energy vector. nrsort2d.m

reorganizes this cell structure to a new cell structure that is indexed by the initial condition. This
greatly simplifies the plotting of the wave function and scattering probabilities.
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Inputs Description Dimension

U scattering dynamics solution at every energy, (cell) 1 × length(E)
le number of scattering energies scalar
np number of nodal points in mesh scalar
ns number of electronic states scalar
iState vector containing initial states vector
maxE maximum value of the energy vector scalar
viba reactant boudnary vibrational structure (subsection 7.27)
vibc product boudnary vibrational structure (subsection 7.27)

Outputs

n non-reactive probabilities (cell) 1 × length(iState)
r reactive probabilities (cell) 1 × length(iState)
psi scattering wave function (cell) 1 × length(iState)

7.19 nrsort2d clebsch.m

This performs the same function as nrsort2d.m but assumes the reordering of the S-matrix elements
as given in subsection 7.4.

7.20 polymesh.m

This subroutine takes any triangulation defined by nodal coordinates, p and a connectivity matrix, t,
and a given polynomial order, n, as inputs and determines the new nodal locations, pn, for use in an
order n FEM calculation. Furthermore, this subroutine generates the order n connectivity matrix, tn,
which identifies all nodes that have been added within a given triangle (used by fem2d.m). polymesh.m
also returns the ‘linearized’ connectivity matrix, ton, with allows the user to very easily visualize the
results of COLSCAT2D . This subroutine is highly optimized and entirely general for any value of n.

Inputs Description Dimension

p node coordinates varies× 2
t connectivity matrix nt × 3
n polynomial order of FEM basis functions scalar (1-5)

Outputs

pn quadratic node coordinates npn × 2
tn quadratic connectivity matrix nt × varies
tln linearized quadratic mesh 4nt × 3
np number of points in the polynomial mesh (size(pn,1)) scalar
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7.21 solver2d.m

The solver2d.m script solves the linear matrix system Qu = b, and returns the approximation to the
wave function at the nodal points as well as the state-to-state scattering amplitudes.
Inputs Description Dimension

E total energy in hartree scalar
T kinetic energy PN FEM matrix (subsection 7.9) (np*ns) × (np*ns)
V potential energy PN FEM matrix (subsection 7.9) (np*ns) × (np*ns)
O kinetic energy PN FEM matrix (subsection 7.9) (np*ns) × (np*ns)
ba indices on a-channel boundary (reactants) 1× na
bc indices on c-channel boundary (products) 1× nc
M mass structure (subsection 7.12)
viba reactant boudnary vibrational structure (subsection 7.27)
vibc product boudnary vibrational structure (subsection 7.27)
iState initial vibrational state of BC scalar
iSurf initial electronic surface of A scalar
ns number of electronic surfaces in calculation (one-state or

two-state)
scalar

np number of nodal points in the mesh scalar

Outputs

U vector of unknowns (psi + S-matrix elements) (np+na+nc)×le

7.22 solver2d clebsch.m

The solver2d.m script solves the linear matrix system Qu = b, and returns the approximation to
the wave function at the nodal points as well as the state-to-state scattering amplitudes. This version
of the subroutine takes two additional parameters to build the extended system using a transformed
reactant or product basis. (subsection 7.4)

7.23 stdint2d.m

This subroutine is the heart and soul of the fast, vectorized construction of the FEM matrices used
in COLSCAT2D . The stdint2d.m subroutine takes the polynomial order, n, as its only input, and
automatically generates the points of the standard triangle required to numerically determine the
coefficients of the basis functions of polynomial order n for the standard triangle. With these basis
functions in hand stdint2d.m uses an analytic expression for the integrals of a 2D polynomial over
the standard triangle.

Inputs Description Dimension

n polynomial order of basis functions scalar

Outputs

t KE constructor matrix nbf2 × 3
v potential energy constructor matrix nbf × nbf2

o overlap constructor matrix 1 × nbf2

nbf = number of basis functions:: nbf = sum(1:(n+1))

We copy the entirety of the stdint2d.m code here to facilitate the discussion and analysis of this
subroutine.

49



1 function [T,V,O] = stdint2d(n)

2 % number of basis functions

3 nbf = (n+1)*(n+2)/2;

4
5 % additional points in mesh

6 [xm,ym] = meshgrid(1:(n-2),(n-2):-1:1);

7 xm = xm(tril(ones(n-2))>0)'/n;

8 ym = ym(tril(ones(n-2))>0)'/n;

9
10 % concatenate all points

11 x = [0; 1; 0; (1:(n-1))'/n; zeros(n-1,1); ((n-1):-1:1)'/n; xm'];

12 y = [0; 0; 1; zeros(n-1,1); (1:(n-1))'/n; (1:(n-1))'/n; ym'];

13
14 % power of each nbf basis functions x^xpow*y^ypow

15 xpowmat = triu(kron(n:-1:0,ones(n+1,1)))';

16 ypowmat = bsxfun(@minus,(n:-1:0),xpowmat);

17 xpow = xpowmat(tril(ones(n+1))>0)';

18 ypow = ypowmat(tril(ones(n+1))>0)';

19
20 % if n = 3

21 % XY(i,:) [xi^3 xi^2yi xiyi^2 yi^3.... xi yi 1]

22 XY = bsxfun(@power,x,xpow).*bsxfun(@power,y,ypow);

23
24 % matrix of basis function coefficients

25 C = XY\eye(nbf);

26
27 % 2d polynomial integral rule: int(int(x^a*y^b,x,0,1-y),y,0,1) = a!b!/(a+b+2)!

28
29 k = bsxfun(@plus,xpow,xpow');

30 l = bsxfun(@plus,ypow,ypow');

31 X = factorial(k).*factorial(l)./factorial(k+l+2);

32
33 % overlap constructor matrix int phi_i phi_j

34 O = reshape((C'*X*C)',1,nbf^2);

35
36 % potential energy constructor matrix int phi_i phi_j phi_k

37 K = repmat(k,1,1,nbf)+reshape(kron(xpow,ones(nbf)),nbf,nbf,nbf);

38 L = repmat(l,1,1,nbf)+reshape(kron(ypow,ones(nbf)),nbf,nbf,nbf);

39 vij = factorial(K).*factorial(L)./factorial(K+L+2);

40 vv = zeros(nbf,nbf,nbf);

41 for m=1:nbf

42 vv(:,:,m) = C'*cat(1,vij(:,:,m))*C;

43 end

44 V = reshape(reshape(vv,nbf^2,nbf)*C,nbf,nbf^2);

45
46 % KE contructor matrix T = int (M\del phi_i)(M del phi_j) Minv = [a b; c d] (see stiffnessn.m)

47 % dx/dy - partial derivative with respect to x/y matrix operators

48 dx = sparse((n+1)+(1:(n*(n+1)/2)),find(xpow>0),xpow(xpow>0),nbf,nbf);

49 dy = sparse((n+1)+(1:(n*(n+1)/2)),find(ypow>0),ypow(ypow>0),nbf,nbf);

50
51 Txx = (C'*dx')*X*(dx*C);

52 Txy = (C'*dx')*X*(dy*C);

53 Tyx = (C'*dy')*X*(dx*C);

54 Tyy = (C'*dy')*X*(dy*C);

55
56 T = [Txx(:) Txy(:)+Tyx(:) Tyy(:)];
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Table 2: The generic polynomial basis functions and the vectors of the powers of x and y for each
term in these expansions. The analytic expression of the integrals of these basis functions depend only
on the powers of x and y.
N generic basis function xpow ypow

1 c10x+ c01y + c00 [1 0 0] [ 0 1 0]
2 c20x

2 + c11xy + c02y
2 + . . . [2 1 0 1 0 0] [ 0 1 2 0 1 0]

c10x+ c01y + c00
3 c30x

3 + c21x
2y + c12xy

2 + c03y
3+. . . [3 2 1 0 2 1 0 1 0 0] [0 1 2 3 0 1 2 0 1 0]

c20x
2 + c11xy + c02y

2 + . . .
c10x+ c01y + c00

4 c40x
4 + c31x

3y + c22x
2y2 + c13xy

3 + c04y
4. . . [4 3 2 1 0 3 2 1 0 2 1 0 1 0 0] [0 1 2 3 4 0 1 2 3 0 1 2 0 1 0]

c30x
3 + c21x

2y + c12xy
2 + c03y

3+. . .
c20x

2 + c11xy + c02y
2 + . . .

c10x+ c01y + c00

To start, this subroutine determines the points that must be added to the vertices (0,0), (1,0) and
(0,1) to define the polynomial basis functions of the desired order. We choose to add points on a
square mesh for convenience. The variables xm and ym store, respectively, the x and y locations of
the interior points that must be added to the standard vertex points. Note: for polynomials orders
1 and 2 there are no points inside the standard triangle. All the points are then concatenated in the
following way, x/y = [standard vertex points, edge points, mid points]. The following figure shows
how these points are ordered for P4.

4 5 6
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10

11

12

1
2

3

13 14

15

Figure 15: The points of the standard triangle (0,0), (1,0), and (0,1) are show in black. The points
that must be added for polynomial order P4 are shown in blue. Also shown is the counting system
used in COLSCAT2Dwhich gives a consistent way to refer to the basis functions.

Once the additional points are known we then determine the basis functions themselves. To start, in
lines 17-26 we define xpow and ypow, which describe the polynomials themselves. The table (2) should
help elucidate their definition.

Given the points that will be used as the nodal points, i.e. x and y, and the powers of the basis function
polynomials, xpow and ypow, the coefficients of the basis functions are determined by a simple matrix
problem XC = 1. For the P1 basis this has the following form x1 y1 1

x2 y2 1
x3 y3 1

 ·

 a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

 1 0 0
0 1 0
0 0 1


In the case of P1 x = [0 1 0] and y = [0 0 1] which gives the solution
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 a1 a2 a3
b1 b2 b3
c1 c2 c3

 =

 −1 1 0
−1 0 1
1 0 0


Given the powers x and y of each term in the polynomial expansions shown in Table (2) and their
coefficients we can easily determine the requisite integrals. Recall the analytic expression for the
integral of xayb over the standard triangle∫ 1

0

∫ 1−y

0
xayb dxdy =

a!b!

(a+ b+ 2)!

We can easily integrate any 2D polynomial over the standard triangle using this expression. As an
example let us consider the overlap integrals for a second order polynomial basis. Let us define the
‘constructor’ overlap matrix as Õ,

Õij =

∫
Ω
ϕ̃iϕ̃j dxdy (4)

where ϕ̃ signifies a standard triangle basis function. We can expand these basis functions as follows

ϕ̃i(x, y) =

k+l≤P∑
k,l

ci,kl x
k yl (5)

Substituting this expression into Eqn. (4) we have

Õij =

∫
Ω

k+l≤P∑
k,l

ci,kl x
k yl

k′+l′≤P∑
k′,l′

cj,k′l′ x
k′ yl

′

 dxdy (6)

Using the above analytic expression for the integral of a 2D polynomial over the standard triangle we
can easily evaluate this expression. We can change this double indexed sum to a sum over a single
index, m. For example consider the P3 basis functions and the indices shown in Table (3).

Table 3: An illustration of how to change from a double index k, l to a single index m for the standard
triangle basis function polynomial terms.

x3 x2y xy2 y3 x2 xy y2 x y 1

k 3 2 1 0 2 1 0 1 0 0
l 0 1 2 3 0 1 2 0 1 0
m 1 2 3 4 5 6 7 8 9 10

Using this conversion to a single index we can write Eqn. (6) as follows

Õij =

∫
Ω

(nbf∑
m

ci,m x
k(m) yl(m)

)(nbf∑
m′

cj,m′ xk(m
′) yl(m

′)

)
dxdy (7)

Pulling the double summation outside of the

Õij = ci,mcj,m′
∑
m,m′

∫
Ω
x(k(m)+k(m′)) y(l(m)+l(m′) dxdy (8)
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and finally we can write Eqn. (8) as a matrix equation,

Õij = CTXC (9)

where the matrix elements of X are defined by the analytic expression for 2D polynomial integrals
over the standard triangle given above, i.e.

Xm,m′ =
(k(m) + k(m′))!(l(m) + l(m′))!

(k(m) + k(m′) + l(m) + l(m′) + 2)!

In the code this matrix is simplified using the xpow and ypow variables, defined on lines 39-40,

kij = xpow(i) + xpow(j)

lij = ypow(i) + ypow(j)

These matrices contain all possible powers of x and y for the product of two basis functions. Because
the integrals only depend on the power of the polynomial terms we can simply call the factorial.m

subroutine which acts element-wise. The last step is to multiply by the coefficient matrices on either
side, done on line 41. Finally we reshape this matrix from dimension of nbf ×nbf to 1×nbf2 for use
in fem2d.m.

The potential energy matrix elements are computed in a similar fashion, however, we must evaluate

Ṽijk =

∫
Ω
ϕ̃iϕ̃jϕ̃k dxdy (10)

We must simply create the 3D matrices for the powers of x and y, i.e.

Kijm = xpow(i) + xpow(j) + xpow(m)

Lijm = ypow(i) + ypow(j) + ypow(m)

These matrices are simple to evaluate using the element-wise factorial.m operation. A little more
care is given in lines 49-51 to multiply by the coefficient matrices by concatenating along the 3rd index.

The kinetic energy matrix elements are slightly more complicated to evaluate. The reason for this is
the presence of the ∇ operator. When we change coordinates from the mass-scaled Jacobi, (R, r), to
the standard triangle coordinates, (x, y), the gradient operator transforms as

∇Rr = (M−1)T∇xy

where

M =

[
R2 −R1 R3 −R1

r2 − r1 r3 − r1

]
We are therefore interested in the following integral over the standard triangle,

T̃ij =

∫
Ω
[(M−1)T∇ϕ̃i]

T · [(M−1)T∇ϕ̃j ] dxdy (11)

(12)

For now let us simply this expression and let M−1 = [a b; c d]. We will correct for this simplification
in stiffness.m. We also have ∇ϕ̃i = [∂xϕi, ∂yϕi]. Substituting these two values we have
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T̃ij =

∫
Ω
(a2 + c2)∂xϕi∂xϕj + (ab+ cd)(∂xϕi∂yϕj + ∂yϕi∂xϕj) + (b2 + d2)∂yϕi∂yϕj dxdy (13)

(14)

There are four distinct integrals that must be considered. Taking the gradient of the basis functions
defined over the standard triangle is quite easy because we have already calculated all the integrals
we need to in the X matrix. We can very easily construct a dx and dy matrix that operate on the C
matrix to yield the appropriate derivative terms. For example, consider the dx matrix for P2

[x2, xy, y2, x, y, 1]



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

 = [2x, y, 0, 1, 0, 0]

Once the matrix form of the derivative operators are made in lines 50-51, the kinetic energy matrix
elements are constructed on lines 53-56. Finally we store T in a slightly different format and the
stiffness.m subroutine is used to add in the a, b, c and d term. Because these coefficients only
depend on the nodal coordinates and their inclusion is easily vectorized.

7.24 tobond.m

The mesh for the finite-element is determined in terms of the mass-scaled Jacobi coordinates, while the
potential energy surface input functions, (subsection 7.28), expect bond coordinates. To determine
the value of the potential energy surfaces at the node points we first use tobond.m to convert the
nodal coordinates from mass-scaled Jacobi to bond coordinates.

Inputs Description Dimension

R mass-scaled Jacobi coordinates matrix n × 2
m mass vector [Ma, Mb, Mc] 1 × 3

Outputs

U bond coordinates matrix n × 2

7.25 tojac.m

The tojac.m script converts bond coordinates to mass-scaled Jacobi coordinates. This is mainly used
during the mesh generations routines.
Inputs Description Dimension

x bond coordinate m × 1
y bond coordinate m × 1
m mass vector [Ma, Mb, Mc] 1 × 3

Outputs

p Jacobi coordinates m × 2
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7.26 trigradient.m

This subroutine is no longer supported as it is unstable for small mesh sizes, especially near the
boundaries. Instead we include a interpolating data to a square mesh and using the built in gradient
function.

7.27 vibfem.m

Once the mesh has been generated and the potential energy surface has been evaluated at each of the
nodal points, we need to determine the vibrational energies and wave functions for the BC and AB
molecules at the boundaries in the, respectively, reactant and product arrangements. This is done by
the script vibfem.m.

The vibfem.m script is based on a ‘PN’ FEM solution to Schrödinger’s equation in one-dimension.
The 1d matrix elements used in this calculation are generated by stdint1d.m in a very similar fashion
to those generated for the 2D problem in subsection 7.23. Eq. (12) in the referenced paper[?] can be
converted to a FE system of matrix equations of the exact same form as Eq. (32). The only difference
is that the basis functions and mesh used are 1-dimensional in the case of solving Eq. (12).
Inputs

r internuclear separation values (in bohr) n × 1
v the potential energy as a function of r (in hartree) n × 1
mu diatomic reduced mass scalar
n polynomial order of 1D basis functions used in FEM calcu-

lation
scalar

Outputs

vib vibrational wavefunctions and energies
vib.wf Each column is the normalized bound state wave function. length(r) × length(r)
vib.e The energy of each bound state wave function. nStates × 1
vib.iwf Intergrated product of wave functions times basis functions. n × nStates

Here we show how to use vibfem.m to calculate the bound state wave functions for a harmonic
approximation to the H2 potential.

% assume a harmonic oscillator potential for H_2

mu = 1837/2; % reduced mass of H_2

omega = 0.020; % in hartrees

r = -2:0.01:2;

v = 0.5*mu*omega^2*r.^2;

% determine vibrational structure

vib = vibfem(r,v,mu,2);

% plot potential

figure(1)

plot(r,v,'r','linewidth',2);

axis([-2 2 -.01 .8])

ylabel('V_{harm}(r) ','fontsize',24)

xlabel('r_{HH} ','fontsize',24)

set(gca,'ytick',0:0.2:0.8)

set(gca,'fontsize',20)
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% plot vibrational wave functions

figure(2)

plot(r,vib.wf(:,1:3),'linewidth',2)

ylabel('\chi(r_{HH})','fontsize',24)

xlabel('r_{HH}','fontsize',24)

set(gca,'ytick',-1.5:0.5:1.5)

set(gca,'fontsize',20)

legend('v=0','v=1','v=2')
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Figure 16: Plots of (left) a harmonic approximation to the potential curve of the H2 molecule as a function of
internuclear separation in bohr and (right) the wavefunctions for the first three states of the harmonic potential.

7.28 vinput

Inputs

x B-C separation distance (bond coordinate) m × n
y A-B separation distance (bond coordinate) m × n
ba indices on reactant boundary (subsection 7.2) 1 × na
bc indices on product boundary (subsection 7.2) 1 × nc

Outputs

v potential energy evaluated at nodal points m × n
va potential energy along reactant boundary nodal points na × ns
vc potential energy along product boundary nodal points nc × ns

To run COLSCAT2D the user must supply the name of a function to evaluate the potential energy
surface over the desired range of internuclear separation coordinates (bond coordinates). The vinput
function handle must be a string and the referred function must have four input values: the ‘x’ and
‘y’ coordinates which must be the bond coordinates Uab and Ubc, respectively, and the boundary
indices ba and bc. The ba and bc i indices identify which points in the mesh lie on the reactant
and product boundaries, respectively. The potential input function should be single valued; when
COLSCAT2Dcalls the vinput.m routine it will pass the x and y coordinates as column vectors and
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expect vinput.m to return a single column vector for v.

The potential input file should also be able to handle input matrices, i.e. if x and y are produced
from a mesh grid of bond coordinates. This functionality is essential for the meshgen.m subroutine
to function correctly. It is also useful to allow the potential input functionality to be dependent on
the user. To analyze the potential outside of the COLSCAT2Dmain routine it is convenient to get
the potential energy surface without the boundary indices. MATLAB makes it fairly east to achieve
this functionality using the number of output arguments variable, ’nargout’. The examples provided
vhh2.m, vfh2.m, and vfhcl 3body.m all make use of nargout in the following way. If the user is only
interested in the potential energy for extraneous analysis, e.g. for use in mepath.m or mepbarrier.m,
then only a single output is requested from the vinput function. For example consider the following
call for the H+H2 potential in the vicinity of the barrier

% create a mesh grid to analyze the hh2 barrier

[x,y] = meshgrid(1.5:0.01:2,1.5:0.01:2);

% return only the potential energy surface

v = vhh2(x,y);

% plot the result

contour(x,y,v,20)

Only a single output variable, v, is requested from vhh2.m. The use of nargout within vhh2 allows
the function to check how many outputs the user requested. It only uses the boundary indices, ba
and bc, if the call to the subroutine expects three output functions. Compare the above call to the
call that COLSCAT2Dmakes on lines 19-21, i.e.

%% spline potential at nodes and the center of each triangle

pb = tobond(p,m);

[v,va,vc] = feval(vinput,pb(:,1),pb(:,2),ba,bc);

Firstly, because vinput is a function handle we must use feval to evaluate the function. Secondly,
because three outputs are expected, v, va, and vc, the function call must provide the boundary indices.

7.28.1 Two-state Potential Inputs

The difference between single-state and two-state potential inputs is that for a coupled, two-state
calculation, the potential energy function in the hamiltonian is actually a matrix, not a single-valued
function. For a given point in bond coordinate space, (x,y), COLSCAT2Dassumes the potential
energy has the following, symmetric form,

V(x, y) =

[
V11(x, y) V12(x, y)
V21(x, y) V22(x, y)

]
where V11(x,y) is the electronic ground state and V22 is the first excited state. Given the input vectors,
x = [x1; x2; . . . ; xm] and y = [y1; y2; . . . ; ym], COLSCAT2Dwill expect the v output to have the
following form
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v =


V11(x1, y1) V12(x1, y1) V21(x1, y1) V22(x1, y1)
V11(x2, y2) V12(x2, y2) V21(x2, y2) V22(x2, y2)

...
...

...
...

V11(xm, ym) V12(xm, ym) V21(xm, ym) V22(xm, ym)


The potential coupling matrix, Av, an additional and optional parameter, can be used to convert from
one potential basis to another, depending on the desired calculation.

For example, the F+HCl potential routine is based on ab initio data. The ab initio data was cal-
culated for the electronic ground state, VΣ and the first excited state, VΠ, as well as the spin-orbit
constant which couples these two electronic states. These two electronic states are not experimentally
measurable and instead we would like to change to the two state, definite J basis, which correspond
to the J=1/2 and J=3/2 asymptotic states of the halogen.
To see how to use the Av parameter, let us consider the vfhcl 3body.m script.

% sigma and pi potentials using 3body fit

[mhf,mhcl,D] = importpotential('fhcl_parameters_3body_new.txt');

% v3 = [V_sig V_pi]

v3 = v3body(x,y,mhf,mhcl,D);

% spin orbit constant

vso = fhcl_so_approx(x,y,100);

% [vsig vpi vso] * Av ===> Av selects the basis

v = [v3 vso]*Av;

The first two commands in this script load parameters that were used in a 3-body expansion fit to ab
initio data calculated by Jacek Klos. These parameters are then passed to v3body.m and the output
variable, v3, has the following form v3 = [VΣ VΠ].

Next an approximation to the spin orbit constant is calculated. This approximation simply flips from
the spin orbit constant of F to the spin orbit constant of Cl near the barrier. The last argument, ’100’,
is an input parameter that dictates the sharpness of the flipping, larger values indicate a sharper
transition.

The ab initio fits and the spin orbit constant are ultimately combined into one matrix

[v3 vso] =


VΣ(x1, y1) VΠ(x1, y1) VSO(x1, y1)
VΣ(x2, y2) VΠ(x2, y2) VSO(x2, y2)

...
...

...
VΣ(xm, ym) VΠ(xm, ym) VSO(xm, ym)


We can use the Av parameter to couple these potential surfaces. The coupling between the Σ and Π
states arises from the the spin-orbit interaction. The coupling between these two states can be written
as

V
Σ/Π
eff (x, y) =

[
VΣ(x, y) 0

0 VΠ(x, y)

]
+

[
0 −

√
2VSO(x, y)

−
√
2VSO(x, y) VSO(x, y)

]
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The definite-J basis is the basis whose potential energy matrix is asymptotically diagonal. In terms
of, VΣ, VΠ, and VSO, we can write the definite-J basis as follows

VJ
eff(x, y) =

[
Vsum(x, y)−VSO(x, y) Vdif(x, y)

Vdif(x, y) Vsum(x, y) + 2VSO(x, y)

]
where Vsum(x, y) = [2VΣ(x, y) + VΠ(x, y)]/3 and Vdif(x, y) =

√
2[VΣ(x, y) − VΠ(x, y)]/3. With the

following choice for the potential coupling matrix, Av, it can be seen that the desired format for v is
achieved by the matrix multiplication shown in the last line of the snippet from vfhcl 3body.mw

Av =

 2/3
√
2/3

√
2/3 2/3

1/3 −
√
2/3 −

√
2/3 1/3

−1 0 0 2


Lastly, the expected outputs of the reactant and product potentials, va and vc, are one column for
every state, i.e. the diagonal elements of the potential that lie on the boundary.

59



8 Future improvements

List possible sources of improvements for the most adventurous users:

• hp - adaptivity: an automatic routine to refine the mesh size and/or polynomial order of the
basis functions of a given triangle. this allows for ultra fast convergence

• for higher order polynomial basis functions add a constraint such that the gradient is smooth
across triangle edges. this may be easily(?) added as an extra set of linear equations to the
QU=b equation in solver.m

• use the solution at one energy to precondition the solution at the next energy (not feasible if
parfor loop is used)

• add 3-d/rotational dynamics
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